ترغب بنشر مسار تعليمي؟ اضغط هنا

Activity pulses induce spontaneous flow reversals in viscoelastic environments

117   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Complex interactions between cellular systems and their surrounding extracellular matrices are emerging as important mechanical regulators of cell functions such as proliferation, motility, and cell death, and such cellular systems are often characterized by pulsating acto-myosin activities. Here, using an active gel model, we numerically explore the spontaneous flow generation by activity pulses in the presence of a viscoelastic medium. The results show that cross-talk between the activity-induced deformations of the viscoelastic surroundings with the time-dependent response of the active medium to these deformations can lead to the reversal of spontaneously generated active flows. We explain the mechanism behind this phenomenon based on the interaction between the active flow and the viscoelastic medium. We show the importance of relaxation timescales of both the polymers and the active particles and provide a phase-space over which such spontaneous flow reversals can be observed. Our results suggest new experiments investigating the role of controlled pulses of activity in living systems ensnared in complex mircoenvironments.

قيم البحث

اقرأ أيضاً

Soft bodies flowing in a channel often exhibit parachute-like shapes usually attributed to an increase of hydrodynamic constraint (viscous stress and/or confinement). We show that the presence of a fluid membrane leads to the reverse phenomenon and b uild a phase diagram of shapes --- which are classified as bullet, croissant and parachute --- in channels of varying aspect ratio. Unexpectedly, shapes are relatively wider in the narrowest direction of the channel. We highlight the role of flow patterns on the membrane in this response to the asymmetry of stress distribution.
It is known from the wave-like motion of microtubules in motility assays that the piconewton forces that motors produce can be sufficient to bend the filaments. In cellular phenomena such as cytosplasmic streaming, molecular motors translocate along cytoskeletal filaments, carrying cargo which entrains fluid. When large numbers of such forced filaments interact through the surrounding fluid, as in particular stages of oocyte development in $Drosophila~melanogaster$, complex dynamics are observed, but the detailed mechanics underlying them has remained unclear. Motivated by these observations, we study here perhaps the simplest model for these phenomena: an elastic filament, pinned at one end, acted on by a molecular motor treated as a point force. Because the force acts tangential to the filament, no matter what its shape, this follower-force problem is intrinsically non-variational, and thereby differs fundamentally from Euler buckling, where the force has a fixed direction, and which, in the low Reynolds number regime, ultimately leads to a stationary, energy-minimizing shape. Through a combination of linear stability theory, analytical study of a solvable simplified two-link model, and numerical studies of the full elastohydrodynamic equations of motion we elucidate the Hopf bifurcation that occurs with increasing forcing of a filament, leading to flapping motion analogous to the high Reynolds number oscillations of a garden hose with a free end.
We study the flow of membranal fluid through a ring of immobile particles mimicking, for example, a fence around a membrane corral. We obtain a simple closed-form expression for the permeability coefficient of the ring as a function of the particles line fraction. The analytical results agree with those of numerical calculations and are found to be robust against changes in particle number and corral shape. From the permeability results we infer the collective diffusion coefficient of lipids through the ring and discuss possible implications for collective lipid transport in a crowded membrane.
A simplified model of natural convection, similar to the Lorenz (1963) system, is compared to computational fluid dynamics simulations in order to test data assimilation methods and better understand the dynamics of convection. The thermosyphon is re presented by a long time flow simulation, which serves as a reference truth. Forecasts are then made using the Lorenz-like model and synchronized to noisy and limited observations of the truth using data assimilation. The resulting analysis is observed to infer dynamics absent from the model when using short assimilation windows. Furthermore, chaotic flow reversal occurrence and residency times in each rotational state are forecast using analysis data. Flow reversals have been successfully forecast in the related Lorenz system, as part of a perfect model experiment, but never in the presence of significant model error or unobserved variables. Finally, we provide new details concerning the fluid dynamical processes present in the thermosyphon during these flow reversals.
The locomotion of microorganisms and spermatozoa in complex viscoelastic fluids is of critical importance in many biological processes such as fertilization, infection, and biofilm formation. Depending on their propulsion mechanisms, microswimmers di splay various responses to a complex fluid environment: increasing or decreasing their swimming speed and efficiency, modifying their propulsion kinematics and swimming gaits, and experiencing different hydrodynamic interactions with their surroundings. In this article, we review the fundamental physics of locomotion of biological and synthetic microswimmers in complex viscoelastic fluids. Starting from a continuum framework, we describe the main theoretical approaches developed to model microswimming in viscoelastic fluids, which typically rely on asymptotically small dimensionless parameters. We then summarise recent progress on the mobility of single cells propelled by cilia, waving flagella and rotating helical flagella in unbounded viscoelastic fluids. We next briefly discuss the impact of other physical factors, including the micro-scale heterogeneity of complex biological fluids, the role of Brownian fluctuations of the microswimmers, the effect of polymer entanglement and the influence of shear-thinning viscosity. In particular, for solutions of long polymer chains whose sizes are comparable to the radius of flagella, continuum models cannot be used and instead Brownian Dynamics for the polymers can predict the swimming dynamics. Finally, we discuss the effect of viscoelasticity on the dynamics of microswimmers in the presence of surfaces or external flows and its impact on collective cellular behavior.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا