ﻻ يوجد ملخص باللغة العربية
Motivation: The design of enzymes is as challenging as it is consequential for making chemical synthesis in medical and industrial applications more efficient, cost-effective and environmentally friendly. While several aspects of this complex problem are computationally assisted, the drafting of catalytic mechanisms, i.e. the specification of the chemical steps-and hence intermediate states-that the enzyme is meant to implement, is largely left to human expertise. The ability to capture specific chemistries of multi-step catalysis in a fashion that enables its computational construction and design is therefore highly desirable and would equally impact the elucidation of existing enzymatic reactions whose mechanisms are unknown. Results: We use the mathematical framework of graph transformation to express the distinction between rules and reactions in chemistry. We derive about 1000 rules for amino acid side chain chemistry from the M-CSA database, a curated repository of enzymatic mechanisms. Using graph transformation we are able to propose hundreds of hypothetical catalytic mechanisms for a large number of unrelated reactions in the Rhea database. We analyze these mechanisms to find that they combine in chemically sound fashion individual steps from a variety of known multi-step mechanisms, showing that plausible novel mechanisms for catalysis can be constructed computationally.
Stem cells can precisely and robustly undergo cellular differentiation and lineage commitment, referred to as stemness. However, how the gene network underlying stemness regulation reliably specifies cell fates is not well understood. To address this
The hyperbolic dependence of catalytic rate on substrate concentration is a classical result in enzyme kinetics, quantified by the celebrated Michaelis-Menten equation. The ubiquity of this relation in diverse chemical and biological contexts has rec
We describe modeling approaches to a network of connected enzyme-catalyzed reactions, with added (bio)chemical processes that introduce biochemical filtering steps into the functioning of such a biocatalytic cascade. Theoretical expressions are deriv
Boolean networks have long been used as models of molecular networks and play an increasingly important role in systems biology. This paper describes a software package, Polynome, offered as a web service, that helps users construct Boolean network m
The stochastic simulation of large-scale biochemical reaction networks is of great importance for systems biology since it enables the study of inherently stochastic biological mechanisms at the whole cell scale. Stochastic Simulation Algorithms (SSA