ﻻ يوجد ملخص باللغة العربية
Artificially-grown diamond crystals have unique properties that make them suitable as solid-state particle detectors and dosimeters in high-radiation environments. We have been using sensors based on single-crystal diamond grown by chemical vapour deposition for dosimetry and beam-loss monitoring at the SuperKEKB collider. Here we describe the assembly and the suite of test and calibration procedures adopted to characterise the diamond-based detectors of this monitoring system. We report the results obtained on 28 detectors and assess the stability and uniformity of response of these devices.
Hydrogenated amorphous silicon (a-Si:H) has remarkable radiation resistance properties and can be deposited on a lot of different substrates. A-Si:H based particle detectors have been built since mid 1980s as planar p-i-n or Schottky diode structures
Charged particle therapy (CPT) is an advanced modality of radiation therapy which has grown rapidly worldwide, driven by recent developments in technology and methods of delivery. To ensure safe and high quality treatments, various instruments are us
We designed, constructed and have been operating a system based on single-crystal synthetic diamond sensors, to monitor the beam losses at the interaction region of the SuperKEKB asymmetric-energy electron-positron collider. The system records the ra
This paper explores the prospect of CMOS devices to assay lead in drinking water, using calorimetry. Lead occurs together with traces of radioisotopes, e.g. Lead-210, producing $gamma$-emissions with energies ranging from 10 keV to several 100 keV wh
The development of Chemical Vapour Deposition (CVD) diamond detectors requests for novel signal amplifiers, capable to match the superb signal-to-noise ratio and timing response of these detectors. Existing amplifiers are still far away from this goa