ترغب بنشر مسار تعليمي؟ اضغط هنا

Modelling COVID-19 Transmission Dynamics in Ghana

130   0   0.0 ( 0 )
 نشر من قبل Edward Acheampong Dr
 تاريخ النشر 2021
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In late 2019, a novel coronavirus, the SARS-CoV-2 outbreak was identified in Wuhan, China and later spread to every corner of the globe. Whilst the number of infection-induced deaths in Ghana, West Africa are minimal when compared with the rest of the world, the impact on the local health service is still significant. Compartmental models are a useful framework for investigating transmission of diseases in societies. To understand how the infection will spread and how to limit the outbreak. We have developed a modified SEIR compartmental model with nine compartments (CoVCom9) to describe the dynamics of SARS-CoV-2 transmission in Ghana. We have carried out a detailed mathematical analysis of the CoVCom9, including the derivation of the basic reproduction number, $mathcal{R}_{0}$. In particular, we have shown that the disease-free equilibrium is globally asymptotically stable when $mathcal{R}_{0}<1$ via a candidate Lyapunov function. Using the SARS-CoV-2 reported data for confirmed-positive cases and deaths from March 13 to August 10, 2020, we have parametrised the CoVCom9 model. The results of this fit show good agreement with data. We used Latin hypercube sampling-rank correlation coefficient (LHS-PRCC) to investigate the uncertainty and sensitivity of $mathcal{R}_{0}$ since the results derived are significant in controlling the spread of SARS-CoV-2. We estimate that over this five month period, the basic reproduction number is given by $mathcal{R}_{0} = 3.110$, with the 95% confidence interval being $2.042 leq mathcal{R}_0 leq 3.240$, and the mean value being $mathcal{R}_{0}=2.623$. Of the 32 parameters in the model, we find that just six have a significant influence on $mathcal{R}_{0}$, these include the rate of testing, where an increasing testing rate contributes to the reduction of $mathcal{R}_{0}$.



قيم البحث

اقرأ أيضاً

There is a continuing debate on relative benefits of various mitigation and suppression strategies aimed to control the spread of COVID-19. Here we report the results of agent-based modelling using a fine-grained computational simulation of the ongoi ng COVID-19 pandemic in Australia. This model is calibrated to match key characteristics of COVID-19 transmission. An important calibration outcome is the age-dependent fraction of symptomatic cases, with this fraction for children found to be one-fifth of such fraction for adults. We apply the model to compare several intervention strategies, including restrictions on international air travel, case isolation, home quarantine, social distancing with varying levels of compliance, and school closures. School closures are not found to bring decisive benefits, unless coupled with high level of social distancing compliance. We report several trade-offs, and an important transition across the levels of social distancing compliance, in the range between 70% and 80% levels, with compliance at the 90% level found to control the disease within 13--14 weeks, when coupled with effective case isolation and international travel restrictions.
This technical report describes a dynamic causal model of the spread of coronavirus through a population. The model is based upon ensemble or population dynamics that generate outcomes, like new cases and deaths over time. The purpose of this model i s to quantify the uncertainty that attends predictions of relevant outcomes. By assuming suitable conditional dependencies, one can model the effects of interventions (e.g., social distancing) and differences among populations (e.g., herd immunity) to predict what might happen in different circumstances. Technically, this model leverages state-of-the-art variational (Bayesian) model inversion and comparison procedures, originally developed to characterise the responses of neuronal ensembles to perturbations. Here, this modelling is applied to epidemiological populations to illustrate the kind of inferences that are supported and how the model per se can be optimised given timeseries data. Although the purpose of this paper is to describe a modelling protocol, the results illustrate some interesting perspectives on the current pandemic; for example, the nonlinear effects of herd immunity that speak to a self-organised mitigation process.
India has been hit by a huge second wave of Covid-19 that started in mid-February 2021. Mumbai was amongst the first cities to see the increase. In this report, we use our agent based simulator to computationally study the second wave in Mumbai. We b uild upon our earlier analysis, where projections were made from November 2020 onwards. We use our simulator to conduct an extensive scenario analysis - we play out many plausible scenarios through varying economic activity, reinfection levels, population compliance, infectiveness, prevalence and lethality of the possible variant strains, and infection spread via local trains to arrive at those that may better explain the second wave fatality numbers. We observe and highlight that timings of peak and valley of the fatalities in the second wave are robust to many plausible scenarios, suggesting that they are likely to be accurate projections for Mumbai. During the second wave, the observed fatalities were low in February and mid-March and saw a phase change or a steep increase in the growth rate after around late March. We conduct extensive experiments to replicate this observed sharp convexity. This is not an easy phenomena to replicate, and we find that explanations such as increased laxity in the population, increased reinfections, increased intensity of infections in Mumbai transportation, increased lethality in the virus, or a combination amongst them, generally do a poor job of matching this pattern. We find that the most likely explanation is presence of small amount of extremely infective variant on February 1 that grows rapidly thereafter and becomes a dominant strain by Mid-March. From a prescriptive view, this points to an urgent need for extensive and continuous genome sequencing to establish existence and prevalence of different virus strains in Mumbai and in India, as they evolve over time.
128 - R. Jayatilaka , R. Patel , M. Brar 2021
Disease transmission is studied through disciplines like epidemiology, applied mathematics, and statistics. Mathematical simulation models for transmission have implications in solving public and personal health challenges. The SIR model uses a compa rtmental approach including dynamic and nonlinear behavior of transmission through three factors: susceptible, infected, and removed (recovered and deceased) individuals. Using the Lambert W Function, we propose a framework to study solutions of the SIR model. This demonstrates the applications of COVID-19 transmission data to model the spread of a real-world disease. Different models of disease including the SIR, SIRm and SEIR model are compared with respect to their ability to predict disease spread. Physical distancing impacts and personal protection equipment use will be discussed in relevance to the COVID-19 spread.
By characterising the time evolution of COVID-19 in term of its velocity (log of the new cases per day) and its rate of variation, or acceleration, we show that in many countries there has been a deceleration even before lockdowns were issued. This f eature, possibly due to the increase of social awareness, can be rationalised by a susceptible-hidden-infected-recovered (SHIR) model introduced by Barnes, in which a hidden (isolated from the virus) compartment $H$ is gradually populated by susceptible people, thus reducing the effectiveness of the virus spreading. By introducing a partial hiding mechanism, for instance due to the impossibility for a fraction of the population to enter the hidden state, we obtain a model that, although still sufficiently simple, faithfully reproduces the different deceleration trends observed in several major countries.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا