ﻻ يوجد ملخص باللغة العربية
Purpose: To develop high throughput multi-label annotators for body (chest, abdomen, and pelvis) Computed Tomography (CT) reports that can be applied across a variety of abnormalities, organs, and disease states. Approach: We used a dictionary approach to develop rule-based algorithms (RBA) for extraction of disease labels from radiology text reports. We targeted three organ systems (lungs/pleura, liver/gallbladder, kidneys/ureters) with four diseases per system based on their prevalence in our dataset. To expand the algorithms beyond pre-defined keywords, attention-guided recurrent neural networks (RNN) were trained using the RBA-extracted labels to classify reports as being positive for one or more diseases or normal for each organ system. Confounding effects on model performance were evaluated using random initialization or pre-trained embedding as well as different sizes of training datasets. Performance was evaluated using the receiver operating characteristic (ROC) area under the curve (AUC) against 2,158 manually obtained labels. Results: Our models extracted disease labels from 261,229 radiology reports of 112,501 unique subjects. Pre-trained models outperformed random initialization across all diseases. As the training dataset size was reduced, performance was robust except for a few diseases with relatively small number of cases. Pre-trained classification AUCs achieved > 0.95 for all five disease outcomes across all three organ systems. Conclusions: Our label-extracting pipeline was able to encompass a variety of cases and diseases by generalizing beyond strict rules with exceptional accuracy. This method can be easily adapted to enable automated labeling of hospital-scale medical data sets for training image-based disease classifiers.
We propose new methods for the prediction of 5-year mortality in elderly individuals using chest computed tomography (CT). The methods consist of a classifier that performs this prediction using a set of features extracted from the CT image and segme
Machine learning models for radiology benefit from large-scale data sets with high quality labels for abnormalities. We curated and analyzed a chest computed tomography (CT) data set of 36,316 volumes from 19,993 unique patients. This is the largest
Measuring airways in chest computed tomography (CT) scans is important for characterizing diseases such as cystic fibrosis, yet very time-consuming to perform manually. Machine learning algorithms offer an alternative, but need large sets of annotate
In this paper, we consider the recent trend of evaluating progress on reinforcement learning technology by using text-based environments and games as evaluation environments. This reliance on text brings advances in natural language processing into t
In multi-label text classification, each textual document can be assigned with one or more labels. Due to this nature, the multi-label text classification task is often considered to be more challenging compared to the binary or multi-class text clas