ترغب بنشر مسار تعليمي؟ اضغط هنا

1-bit Adam: Communication Efficient Large-Scale Training with Adams Convergence Speed

134   0   0.0 ( 0 )
 نشر من قبل Hanlin Tang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Scalable training of large models (like BERT and GPT-3) requires careful optimization rooted in model design, architecture, and system capabilities. From a system standpoint, communication has become a major bottleneck, especially on commodity systems with standard TCP interconnects that offer limited network bandwidth. Communication compression is an important technique to reduce training time on such systems. One of the most effective methods is error-compensated compression, which offers robust convergence speed even under 1-bit compression. However, state-of-the-art error compensation techniques only work with basic optimizers like SGD and momentum SGD, which are linearly dependent on the gradients. They do not work with non-linear gradient-based optimizers like Adam, which offer state-of-the-art convergence efficiency and accuracy for models like BERT. In this paper, we propose 1-bit Adam that reduces the communication volume by up to $5times$, offers much better scalability, and provides the same convergence speed as uncompressed Adam. Our key finding is that Adams variance (non-linear term) becomes stable (after a warmup phase) and can be used as a fixed precondition for the rest of the training (compression phase). Experiments on up to 256 GPUs show that 1-bit Adam enables up to $3.3times$ higher throughput for BERT-Large pre-training and up to $2.9times$ higher throughput for SQuAD fine-tuning. In addition, we provide theoretical analysis for our proposed work.



قيم البحث

اقرأ أيضاً

To train large models (like BERT and GPT-3) with hundreds or even thousands of GPUs, the communication has become a major bottleneck, especially on commodity systems with limited-bandwidth TCP interconnects network. On one side large-batch optimizati on such as LAMB algorithm was proposed to reduce the number of communications. On the other side, communication compression algorithms such as 1-bit SGD and 1-bit Adam help to reduce the volume of each communication. However, we find that simply using one of the techniques is not sufficient to solve the communication challenge, especially on low-bandwidth Ethernet networks. Motivated by this we aim to combine the power of large-batch optimization and communication compression, but we find that existing compression strategies cannot be directly applied to LAMB due to its unique adaptive layerwise learning rates. To this end, we design a new communication-efficient algorithm, 1-bit LAMB, which introduces a novel way to support adaptive layerwise learning rates even when communication is compressed. In addition, we introduce a new system implementation for compressed communication using the NCCL backend of PyTorch distributed, which improves both usability and performance compared to existing MPI-based implementation. For BERT-Large pre-training task with batch sizes from 8K to 64K, our evaluations on up to 256 GPUs demonstrate that 1-bit LAMB with NCCL-based backend is able to achieve up to 4.6x communication volume reduction, up to 2.8x end-to-end speedup (in terms of number of training samples per second), and the same convergence speed (in terms of number of pre-training samples to reach the same accuracy on fine-tuning tasks) compared to uncompressed LAMB.
In this paper, we consider hybrid parallelism -- a paradigm that employs both Data Parallelism (DP) and Model Parallelism (MP) -- to scale distributed training of large recommendation models. We propose a compression framework called Dynamic Communic ation Thresholding (DCT) for communication-efficient hybrid training. DCT filters the entities to be communicated across the network through a simple hard-thresholding function, allowing only the most relevant information to pass through. For communication efficient DP, DCT compresses the parameter gradients sent to the parameter server during model synchronization. The threshold is updated only once every few thousand iterations to reduce the computational overhead of compression. For communication efficient MP, DCT incorporates a novel technique to compress the activations and gradients sent across the network during the forward and backward propagation, respectively. This is done by identifying and updating only the most relevant neurons of the neural network for each training sample in the data. We evaluate DCT on publicly available natural language processing and recommender models and datasets, as well as recommendation systems used in production at Facebook. DCT reduces communication by at least $100times$ and $20times$ during DP and MP, respectively. The algorithm has been deployed in production, and it improves end-to-end training time for a state-of-the-art industrial recommender model by 37%, without any loss in performance.
Stochastic gradient descent (SGD) has taken the stage as the primary workhorse for large-scale machine learning. It is often used with its adaptive variants such as AdaGrad, Adam, and AMSGrad. This paper proposes an adaptive stochastic gradient desce nt method for distributed machine learning, which can be viewed as the communication-adaptive counterpart of the celebrated Adam method - justifying its name CADA. The key components of CADA are a set of new rules tailored for adaptive stochastic gradients that can be implemented to save communication upload. The new algorithms adaptively reuse the stale Adam gradients, thus saving communication, and still have convergence rates comparable to original Adam. In numerical experiments, CADA achieves impressive empirical performance in terms of total communication round reduction.
Federated learning (FL) is a prevailing distributed learning paradigm, where a large number of workers jointly learn a model without sharing their training data. However, high communication costs could arise in FL due to large-scale (deep) learning m odels and bandwidth-constrained connections. In this paper, we introduce a communication-efficient algorithmic framework called CFedAvg for FL with non-i.i.d. datasets, which works with general (biased or unbiased) SNR-constrained compressors. We analyze the convergence rate of CFedAvg for non-convex functions with constant and decaying learning rates. The CFedAvg algorithm can achieve an $mathcal{O}(1 / sqrt{mKT} + 1 / T)$ convergence rate with a constant learning rate, implying a linear speedup for convergence as the number of workers increases, where $K$ is the number of local steps, $T$ is the number of total communication rounds, and $m$ is the total worker number. This matches the convergence rate of distributed/federated learning without compression, thus achieving high communication efficiency while not sacrificing learning accuracy in FL. Furthermore, we extend CFedAvg to cases with heterogeneous local steps, which allows different workers to perform a different number of local steps to better adapt to their own circumstances. The interesting observation in general is that the noise/variance introduced by compressors does not affect the overall convergence rate order for non-i.i.d. FL. We verify the effectiveness of our CFedAvg algorithm on three datasets with two gradient compression schemes of different compression ratios.
Large-scale distributed training of neural networks is often limited by network bandwidth, wherein the communication time overwhelms the local computation time. Motivated by the success of sketching methods in sub-linear/streaming algorithms, we intr oduce Sketched SGD, an algorithm for carrying out distributed SGD by communicating sketches instead of full gradients. We show that Sketched SGD has favorable convergence rates on several classes of functions. When considering all communication -- both of gradients and of updated model weights -- Sketched SGD reduces the amount of communication required compared to other gradient compression methods from $mathcal{O}(d)$ or $mathcal{O}(W)$ to $mathcal{O}(log d)$, where $d$ is the number of model parameters and $W$ is the number of workers participating in training. We run experiments on a transformer model, an LSTM, and a residual network, demonstrating up to a 40x reduction in total communication cost with no loss in final model performance. We also show experimentally that Sketched SGD scales to at least 256 workers without increasing communication cost or degrading model performance.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا