ﻻ يوجد ملخص باللغة العربية
This paper focuses on error-correcting codes that can handle a predefined set of specific error patterns. The need for such codes arises in many settings of practical interest, including wireless communication and flash memory systems. In many such settings, a smaller field size is achievable than that offered by MDS and other standard codes. We establish a connection between the minimum alphabet size for this generalized setting and the combinatorial properties of a hypergraph that represents the prespecified collection of error patterns. We also show a connection between error and erasure correcting codes in this specialized setting. This allows us to establish bounds on the minimum alphabet size and show an advantage of non-linear codes over linear codes in a generalized setting. We also consider a variation of the problem which allows a small probability of decoding error and relate it to an approximate version of hypergraph coloring.
A Maximum Distance Separable code over an alphabet $F$ is defined via an encoding function $C:F^k rightarrow F^n$ that allows to retrieve a message $m in F^k$ from the codeword $C(m)$ even after erasing any $n-k$ of its symbols. The minimum possible
We present a framework for minimizing costs in constant weight codes while maintaining a certain amount of differentiable codewords. Our calculations are based on a combinatorial view of constant weight codes and relay on simple approximations.
Zero-error single-channel source coding has been studied extensively over the past decades. Its natural multi-channel generalization is however not well investigated. While the special case with multiple symmetric-alphabet channels was studied a deca
A locally recoverable code is an error-correcting code such that any erasure in a coordinate of a codeword can be recovered from a set of other few coordinates. In this article we introduce a model of local recoverable codes that also includes local
Entanglement-assisted quantum error correcting codes (EAQECCs) constructed from Reed-Solomon codes and BCH codes are considered in this work. It is provided a complete and explicit formula for the parameters of EAQECCs coming from any Reed-Solomon co