ترغب بنشر مسار تعليمي؟ اضغط هنا

Minimizing the alphabet size in codes with restricted error sets

74   0   0.0 ( 0 )
 نشر من قبل Mira Gonen
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper focuses on error-correcting codes that can handle a predefined set of specific error patterns. The need for such codes arises in many settings of practical interest, including wireless communication and flash memory systems. In many such settings, a smaller field size is achievable than that offered by MDS and other standard codes. We establish a connection between the minimum alphabet size for this generalized setting and the combinatorial properties of a hypergraph that represents the prespecified collection of error patterns. We also show a connection between error and erasure correcting codes in this specialized setting. This allows us to establish bounds on the minimum alphabet size and show an advantage of non-linear codes over linear codes in a generalized setting. We also consider a variation of the problem which allows a small probability of decoding error and relate it to an approximate version of hypergraph coloring.



قيم البحث

اقرأ أيضاً

A Maximum Distance Separable code over an alphabet $F$ is defined via an encoding function $C:F^k rightarrow F^n$ that allows to retrieve a message $m in F^k$ from the codeword $C(m)$ even after erasing any $n-k$ of its symbols. The minimum possible alphabet size of general (non-linear) MDS codes for given parameters $n$ and $k$ is unknown and forms one of the central open problems in coding theory. The paper initiates the study of the alphabet size of codes in a generalized setting where the coding scheme is required to handle a pre-specified subset of all possible erasure patterns, naturally represented by an $n$-vertex $k$-uniform hypergraph. We relate the minimum possible alphabet size of such codes to the strong chromatic number of the hypergraph and analyze the tightness of the obtained bounds for both the linear and non-linear settings. We further consider variations of the problem which allow a small probability of decoding error.
We present a framework for minimizing costs in constant weight codes while maintaining a certain amount of differentiable codewords. Our calculations are based on a combinatorial view of constant weight codes and relay on simple approximations.
Zero-error single-channel source coding has been studied extensively over the past decades. Its natural multi-channel generalization is however not well investigated. While the special case with multiple symmetric-alphabet channels was studied a deca de ago, codes in such setting have no advantage over single-channel codes in data compression, making them worthless in most applications. With essentially no development since the last decade, in this paper, we break the stalemate by showing that it is possible to beat single-channel source codes in terms of compression assuming asymmetric-alphabet channels. We present the multi-channel analog of several classical results in single-channel source coding, such as that a multi-channel Huffman code is an optimal tree-decodable code. We also show some evidences that finding an efficient construction of multi-channel Huffman codes may be hard. Nevertheless, we propose a suboptimal code construction whose redundancy is guaranteed to be no larger than that of an optimal single-channel source code.
100 - Carlos Munuera 2018
A locally recoverable code is an error-correcting code such that any erasure in a coordinate of a codeword can be recovered from a set of other few coordinates. In this article we introduce a model of local recoverable codes that also includes local error detection. The cases of the Reed-Solomon and Locally Recoverable Reed-Solomon codes are treated in some detail.
Entanglement-assisted quantum error correcting codes (EAQECCs) constructed from Reed-Solomon codes and BCH codes are considered in this work. It is provided a complete and explicit formula for the parameters of EAQECCs coming from any Reed-Solomon co de, for the Hermitian metric, and from any BCH code with extension degree $2$ and consecutive cyclotomic cosets, for both the Euclidean and the Hermitian metric. The main task in this work is the computation of a completely general formula for $c$, the minimum number of required maximally entangled quantum states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا