ترغب بنشر مسار تعليمي؟ اضغط هنا

Highly effective gating of graphene on GaN

314   0   0.0 ( 0 )
 نشر من قبل Jakub Kierdaszuk
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By using four layered graphene/gallium nitride (GaN) Schottky diodes with an undoped GaN spacer, we demonstrate highly effective gating of graphene at low bias rendering this type of structure very promising for potential applications. An observed Raman G band position shift larger than 8.5 cm-1 corresponds to an increase in carrier concentration of about 1.2x10^13 cm-2. The presence of a distinct G band splitting together with a narrow symmetric 2D band indicates turbostratic layer stacking and suggests the presence of a high potential gradient near the Schottky junction even at zero bias. The subbands characterized by the highest Raman energies correspond to the largest concentration of electrons. An analysis based on electroreflectance measurements and a modified Richardson equation confirmed that graphene on n-GaN separated by an undoped GaN spacer behaves like a capacitor at reverse bias. At least 60% of G subband position shifts occur at forward bias, which is related to a rapid reduction of electric field near the Schottky junction. Raman micromapping shows a high uniformity of gating efficiency on the surface. Therefore, our studies demonstrate the usefulness of few layer turbostratic graphene deposited on GaN for tracing electron-phonon coupling in graphene. Multilayer graphene also provides uniform and stable electric contacts. Moreover, the observed bias sensitive G band splitting can be used as an indicator of charge transfer in sensor applications in the low bias regime.



قيم البحث

اقرأ أيضاً

We give the results of density functional calculations for graphene with a widely varying fluorine adsorptions. We give a systematic analysis of the adsorption energies, lattice constants, bulk modulus, bandgap openings, and magnetic properties. We f ind that a number of different adsorption geometries and a range of physical properties can occur for each adsorbate coverage. The systems are found to range from metallic to semiconducting with widely vary band gaps, and a number of interesting magnetic phases are found. We expect that many of these structures may occur in real materials systems. Further that a listing of the properties found here may help in determining what fluorinated graphenes are produced experimentally.
Growth of perovskite oxide thin films on Si in crystalline form has long been a critical obstacle for the integration of multifunctional oxides into Si-based technologies. In this study, we propose pulsed laser deposition of a crystalline SrTiO3 thin film on a Si using graphene substrate. The SrTiO3 thin film on graphene has a highly (00l)-oriented crystalline structure which results from the partial epitaxy. Moreover, graphene promotes a sharp interface by highly suppressing the chemical intermixing. The important role of graphene as a 2D substrate and diffusion barrier allows expansion of device applications based on functional complex oxides.
We report electrical characterization of monolayer molybdenum disulfide (MoS2) devices using a thin layer of polymer electrolyte consisting of poly(ethylene oxide) (PEO) and lithium perchlorate (LiClO4) as both a contact-barrier reducer and channel m obility booster. We find that bare MoS2 devices (without polymer electrolyte) fabricated on Si/SiO2 have low channel mobility and large contact resistance, both of which severely limit the field-effect mobility of the devices. A thin layer of PEO/ LiClO4 deposited on top of the devices not only substantially reduces the contact resistance but also boost the channel mobility, leading up to three-orders-of-magnitude enhancement of the field-effect mobility of the device. When the polymer electrolyte is used as a gate medium, the MoS2 field-effect transistors exhibit excellent device characteristics such as a near ideal subthreshold swing and an on/off ratio of 106 as a result of the strong gate-channel coupling.
Spin information processing is a possible new paradigm for post-CMOS (complementary metal-oxide semiconductor) electronics and efficient spin propagation over long distances is fundamental to this vision. However, despite several decades of intense r esearch, a suitable platform is still wanting. We report here on highly efficient spin transport in two-terminal polarizer/analyser devices based on high-mobility epitaxial graphene grown on silicon carbide. Taking advantage of high-impedance injecting/detecting tunnel junctions, we show spin transport efficiencies up to 75%, spin signals in the mega-ohm range and spin diffusion lengths exceeding 100 {mu}m. This enables spintronics in complex structures: devices and network architectures relying on spin information processing, well beyond present spintronics applications, can now be foreseen.
The optical properties of a stack of GaN/AlN quantum discs (QDiscs) in a GaN nanowire have been studied by spatially resolved cathodoluminescence (CL) at the nanoscale (nanoCL) using a Scanning Transmission Electron Microscope (STEM) operating in spe ctrum imaging mode. For the electron beam excitation in the QDisc region, the luminescence signal is highly localized with spatial extension as low as 5 nm due to the high band gap difference between GaN and AlN. This allows for the discrimination between the emission of neighbouring QDiscs and for evidencing the presence of lateral inclusions, about 3 nm thick and 20 nm long rods (quantum rods, QRods), grown unintentionally on the nanowire sidewalls. These structures, also observed by STEM dark-field imaging, are proven to be optically active in nanoCL, emitting at similar, but usually shorter, wavelengths with respect to most QDiscs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا