ﻻ يوجد ملخص باللغة العربية
Growth of perovskite oxide thin films on Si in crystalline form has long been a critical obstacle for the integration of multifunctional oxides into Si-based technologies. In this study, we propose pulsed laser deposition of a crystalline SrTiO3 thin film on a Si using graphene substrate. The SrTiO3 thin film on graphene has a highly (00l)-oriented crystalline structure which results from the partial epitaxy. Moreover, graphene promotes a sharp interface by highly suppressing the chemical intermixing. The important role of graphene as a 2D substrate and diffusion barrier allows expansion of device applications based on functional complex oxides.
Strain engineering with different substrate facets is promising for tuning functional properties of thin film perovskite oxides. By choice of facet, different surface symmetries and chemical bond directions for epitaxial interfaces can be tailored. H
Multiferroic BiFeO3 (BFO) thin film exhibiting desired ferroelectric and enhanced magnetic properties was grown on La0.67Sr0.33MnO3 (LSMO) buffered Pt/TiO2/SiO2/Si substrates by off-axis RF magnetic sputtering, where a highly (111)-oriented texture w
The surface termination of (100)-oriented LaAlO3 (LAO) single crystals was examined by atomic force microscopy and optimized to produce a single-terminated atomically flat surface by annealing. Then the atomically flat STO film was achieved on a sing
The stoichiometric 111 iron-based superconductor, LiFeAs, has attacted great research interest in recent years. For the first time, we have successfully grown LiFeAs thin film by molecular beam epitaxy (MBE) on SrTiO3(001) substrate, and studied the
We report a scalable approach to synthesize a large-area (up to 4 mm) thin black phosphorus (BP) film on a flexible substrate. We first deposited a red phosphorus (RP) thin-film on a flexible polyester substrate, followed by its conversion to BP in a