ﻻ يوجد ملخص باللغة العربية
Using the Hamilton Echelle Spectrograph at Lick Observatory, we have obtained precise radial velocities (RVs) of a sample of 373 G- and K-giant stars over more than 12 years, leading to the discovery of several single and multiple planetary systems. The RVs of the long-period (~53 years) spectroscopic binary $epsilon$ Cyg (HIP 102488) are found to exhibit additional regular variations with a much shorter period (~291 days). We intend to improve the orbital solution of the $epsilon$ Cyg system and attempt to identify the cause of the nearly periodic shorter period variations, which might be due to an additional substellar companion. We used precise RV measurements of the K-giant star $epsilon$ Cyg from Lick Observatory, in combination with a large set of RVs collected more recently with the SONG telescope, as well as archival data sets. Our Keplerian model to the RVs characterizes the orbit of the spectroscopic binary to higher precision than achieved previously, resulting in a semi-major axis of $a = 15.8 mathrm{AU}$, an eccentricity of $e = 0.93$, and a minimum mass of the secondary of $m sin i = 0.265 M_odot$. Additional short-period RV variations closely resemble the signal of a Jupiter-mass planet orbiting the evolved primary component with a period of $291 mathrm{d}$, but the period and amplitude of the putative orbit change strongly over time. Furthermore, in our stability analysis of the system, no stable orbits could be found in a large region around the best fit. Both of these findings deem a planetary cause of the RV variations unlikely. Most of the investigated alternative scenarios, such as an hierarchical triple or stellar spots, also fail to explain the observed variability convincingly. Due to its very eccentric binary orbit, it seems possible, however, that $epsilon$ Cyg could be an extreme example of a heartbeat system.
Radial-velocity variations of the K giant star Aldebaran ($alpha$ Tau) were first reported in the early 1990s. After subsequent analyses, the radial-velocity variability with a period of $sim 629,mathrm{d}$ has recently been interpreted as caused by
Radial-velocity measurements and sine-curve fits to the orbital radial velocity variations are presented for the last eight close binary systems analyzed the same way as in the previous papers of this series: QX And, DY Cet, MR Del, HI Dra, DD Mon, V
We present radial-velocity (RV) measurements for the K giant $ u$ Oph (= HIP88048, HD163917, HR6698), which reveal two brown dwarf companions with a period ratio close to 6:1. For our orbital analysis we use 150 precise RV measurements taken at Lick
High fidelity iodine spectra provide the wavelength and instrument calibration needed to extract precise radial velocities (RVs) from stellar spectral observations taken through iodine cells. Such iodine spectra are usually taken by a Fourier Transfo
The abilities of radial velocity exoplanet surveys to detect the lowest-mass extra-solar planets are currently limited by a combination of instrument precision, lack of data, and jitter. Jitter is a general term for any unknown features in the noise,