ترغب بنشر مسار تعليمي؟ اضغط هنا

Complex Dirac-like Electronic Structure in Atomic Site Ordered Rh3In3.4Ge3.6

177   0   0.0 ( 0 )
 نشر من قبل Luis Balicas Dr
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the synthesis via an indium flux method of a novel single-crystalline compound Rh3In3.4Ge3.6 that belongs to the cubic Ir3Ge7 structure type. In Rh3In3.4Ge3.6, the In and Ge atoms choose to preferentially occupy, respectively, the 12d and 16f sites of the Im-3m space group, thus creating a colored version of the Ir3Ge7 structure. Like the other compounds of the Ir3Ge7 family, Rh3In3.4Ge3.6 shows potential as a thermoelectric displaying a relatively large power factor, PF ~ 2 mW/cmK2, at a temperature T ~ 225 K albeit showing a modest figure of merit, ZT = 8 x 10-4, due to the lack of a finite band gap. These figures might improve through a use of chemical substitution strategies to achieve band gap opening. Remarkably, electronic band structure calculations reveal that this compound displays a complex Dirac-like electronic structure relatively close to the Fermi level. The electronic structure is composed of several Dirac type-I and type-II nodes, and even Dirac type-III nodes that result from the touching between a flat band and a linearly dispersing band. This rich Dirac-like electronic dispersion offers the possibility to observe Dirac type-III nodes and study their role in the physical properties of Rh3In3.4Ge3.6 and related Ir3Ge7-type materials.



قيم البحث

اقرأ أيضاً

We have investigated the crystal structure of LaOBiPbS3 using neutron diffraction and synchrotron X-ray diffraction. From structural refinements, we found that the two metal sites, occupied by Bi and Pb, were differently surrounded by the sulfur atom s. Calculated bond valence sum suggested that one metal site was nearly trivalent and the other was nearly divalent. Neutron diffraction also revealed site selectivity of Bi and Pb in the LaOBiPbS3 structure. These results suggested that the crystal structure of LaOBiPbS3 can be regarded as alternate stacks of the rock-salt-type Pb-rich sulfide layers and the LaOBiS2-type Bi-rich layers. From band calculations for an ideal (LaOBiS2)(PbS) system, we found that the S bands of the PbS layer were hybridized with the Bi bands of the BiS plane at around the Fermi energy, which resulted in the electronic characteristics different from that of LaOBiS2. Stacking the rock-salt type sulfide (chalcogenide) layers and the BiS2-based layered structure could be a new strategy to exploration of new BiS2-based layered compounds, exotic two-dimensional electronic states, or novel functionality.
Ba2CoWO6 (BCoW) has been synthesized in polycrystalline form by solid state reaction at 1200C. Structural characterization of the compound was done through X-ray diffraction (XRD) followed by Rietveld analysis of the XRD pattern. The crystal structur e is cubic, space group Fm-3m (No 225) with the lattice parameter, a=8.210A. Optical band-gap of the present system has been calculated using the UV-Vis Spectroscopy and Kubelka-Munk function, its value being 2.45 eV. A detailed study of the electronic properties has also been carried out using the density functional theory (DFT) techniques implemented on WIEN2k. Importance of electron-electron interaction between the Co ions leading to half-metallic behavior, crystal and exchange splitting together with the hybridization between O and Co, W has been investigated using the total and partial density of states.
137 - W. Kobayashi , , T. Ishibashi 2011
We report x-ray diffraction, resistivity, thermopower, and magnetization of Sr3ErMn4-xGaxO10.5-d, in which A-site ordered tetragonal phase appears above x=1, and reveal that the system exhibits typical properties seen in the antiferromagnetic insulat or with Mn3+. We succeed in preparing both A-site ordered and disordered phases for x=1 in different preparation conditions, and observe a significant decrease of the resistivity in the disordered phase. We discuss possible origins of the decrease focusing on the dimensionality and the disordered effect.
In this brief review we discuss the transient processes in solids under irradiation with femtosecond X-ray free-electron-laser (FEL) pulses and swift-heavy ions (SHI). Both kinds of irradiation produce highly excited electrons in a target on extremel y short timescales. Transfer of the excess electronic energy into the lattice may lead to observable target modifications such as phase transitions and damage formation. Transient kinetics of material excitation and relaxation under FEL or SHI irradiation are comparatively discussed. The same origin for the electronic and atomic relaxation in both cases is demonstrated. Differences in these kinetics introduced by the geometrical effects ({mu}m-size of a laser spot vs nm-size of an ion track) and initial irradiation (photoabsorption vs an ion impact) are analyzed. The basic mechanisms of electron transport and electron-lattice coupling are addressed. Appropriate models and their limitations are presented. Possibilities of thermal and nonthermal melting of materials under FEL and SHI irradiation are discussed.
104 - Y. Sato , Y. Fukaya , M. Cameau 2020
Electronic structure of the 3x3 ordered-phase of a silicon (Si) layer on Al(111) has been studied by angle resolved photoemission spectroscopy (ARPES) technique using synchrotron radiation and modeled by a trial atomic model. A closed Fermi surface o riginating from linearly dispersing band is identified. A band structure calculation of a trial atomic model of the honeycomb silicene on Al(111) implies that the metallic band originates from the Al-Si hybrid state that has the Dirac cone-like dispersion curves. The Si layer on Al(111) can be a model system of Xene to realize the massless electronic system through the overlayer-substrate interaction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا