ﻻ يوجد ملخص باللغة العربية
The optimization of high frequency giant magnetoimpedance (GMI) effect and its magnetic field sensitivity in melt-extracted Co69.25Fe4.25Si13B12.5Nb1 amorphous microwires, through a multi-step Joule annealing (MSA) technique, was systematically studied. The surface morphology, microstructure, surface magnetic property, and high frequency GMI response of the Co-rich microwires were explored using scanning electron microscopy (SEM), magneto-optical Kerr effect (MOKE) magnetometry, transmission electron microscopy (TEM), and impedance analyzer, respectively. An initial dc current (idc) of 20 mA, which was then increased by 20 mA at every time-step (10 min) up to 300 mA, was applied to the microwires. The MSA of 20 mA to 100 mA remarkably improved the GMI ratio and its field sensitivity up to 760% (1.75 time of that of the as-prepared), and 925%/Oe (more than 17.92 times of that of the as-prepared) at an operating frequency of 20 MHz, respectively. Our study indicates that the MSA technique can enhance the microstructures and the surface magnetic domain structures of the Co-rich magnetic microwires, giving rise to the GMI enhancement. This technique is suitable for improving the GMI sensitivity at small magnetic fields, which is highly promising for biomedical sensing and healthcare monitoring.
We investigate the microwave properties of epoxy-based composite containing melt-extracted CoFeBSiNb microwires fabricated by a combined current-modulation annealing (CCMA) technique. We observe a shift of the resonance peak in the effective permitti
A study of magnetic hysteresis and Giant magnetoimpedance (GMI) in amorphous glass covered Co-Si-B and Co-Mn-Si-B wires is presented. The wires, about 10 microns in diameter, were obtained by glass-coated melt spinning technique. Samples with positiv
Using the dielectric resonator method, we have investigated nonlinearities in the surface impedance Zs = Rs + jXs of YBa2Cu3O7 thin films at 10 GHz as function of the incident microwave power level and temperature. The use of a rutile dielectric reso
A proximity focusing ring imaging Cherenkov detector, with the radiator consisting of two or more aerogel layers of different refractive indices, has been tested in 1-4 GeV/c pion beams at KEK. Essentially, a multiple refractive index aerogel radiato
The limitations in performance of the present RICH system in the LHCb experiment are given by the natural chromatic dispersion of the gaseous Cherenkov radiator, the aberrations of the optical system and the pixel size of the photon detectors. Moreov