ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological models for stable motivic invariants of regular number rings

88   0   0.0 ( 0 )
 نشر من قبل Tom Bachmann
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

For an infinity of number rings we express stable motivic invariants in terms of topological data determined by the complex numbers, the real numbers, and finite fields. We use this to extend Morels identification of the endomorphism ring of the motivic sphere with the Grothendieck-Witt ring of quadratic forms to deeper base schemes.



قيم البحث

اقرأ أيضاً

In this paper we prove a Thomason-style descent theorem for the $rho$-complete sphere spectrum. In particular, we deduce a very general etale descent result for torsion, $rho$-complete motivic spectra. To this end, we prove a new convergence result f or slice spectral sequence in the $rho$-complete motivic category, following Levines work. This generalizes and extends previous etale descent results for motivic cohomology theories which, combined with etale rigidity results, gives a complete, structural description of the etale motivic stable category.
Over any field of characteristic not 2, we establish a 2-term resolution of the $eta$-periodic, 2-local motivic sphere spectrum by shifts of the connective 2-local Witt K-theory spectrum. This is curiously similar to the resolution of the K(1)-local sphere in classical stable homotopy theory. As applications we determine the $eta$-periodized motivic stable stems and the $eta$-periodized algebraic symplectic and SL-cobordism groups. Along the way we construct Adams operations on the motivic spectrum representing Hermitian K-theory and establish new completeness results for certain motivic spectra over fields of finite virtual 2-cohomological dimension. In an appendix, we supply a new proof of the homotopy fixed point theorem for the Hermitian K-theory of fields.
87 - Tom Bachmann 2020
We construct well-behaved extensions of the motivic spectra representing generalized motivic cohomology and connective Balmer--Witt K-theory (among others) to mixed characteristic Dedekind schemes on which 2 is invertible. As a consequence we lift th e fundamental fiber sequence of $eta$-periodic motivic stable homotopy theory established in [arxiv:2005.06778] from fields to arbitrary base schemes, and use this to determine (among other things) the $eta$-periodized algebraic symplectic and SL-cobordism groups of mixed characteristic Dedekind schemes containing 1/2.
140 - Tom Bachmann 2020
We establish a kind of degree zero Freudenthal Gm-suspension theorem in motivic homotopy theory. From this we deduce results about the conservativity of the P^1-stabilization functor. In order to establish these results, we show how to compute cert ain pullbacks in the cohomology of a strictly homotopy invariant sheaf in terms of the Rost--Schmid complex. This establishes the main conjecture of [BY18], which easily implies the aforementioned results.
We define a notion of colimit for diagrams in a motivic category indexed by a presheaf of spaces (e.g. an etale classifying space), and we study basic properties of this construction. As a case study, we construct the motivic analogs of the classical extended and generalized powers, which refine the categoric
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا