ﻻ يوجد ملخص باللغة العربية
The past decade has witnessed a surge of interest in exploring emergent particles in condensed matter systems. Novel particles, emerged as excitations around exotic band degeneracy points, continue to be reported in real materials and artificially engineered systems, but so far, we do not have a complete picture on all possible types of particles that can be achieved. Here, via systematic symmetry analysis and modeling, we accomplish a complete list of all possible particles in time reversal-invariant systems. This includes both spinful particles such as electron quasiparticles in solids, and spinless particles such as phonons or even excitations in electric-circuit and mechanical networks. We establish detailed correspondence between the particle, the symmetry condition, the effective model, and the topological character. This obtained encyclopedia concludes the search for novel emergent particles and provides concrete guidance to achieve them in physical systems.
Recently, the very first large-gap Kane-Mele quantum spin Hall insulator was predicted to be monolayer jacutingaite (Pt$_2$HgSe$_3$), a naturally-occurring exfoliable mineral discovered in Brazil in 2008. The stacking of quantum spin Hall monolayers
The successful isolation of graphene ten years ago has evoked a rapidly growing scientific interest in the nature of two-dimensional (2D) crystals. A number of different 2D crystals has been produced since then, with properties ranging from supercond
Topological phases of matter have been extensively studied for their intriguing bulk and edge properties. Recently, higher-order topological insulators with boundary states that are two or more dimensions lower than the bulk states, have been propose
The dispersion properties of exciton polaritons in multiple-quantum-well based resonant photonic crystals are studied. In the case of structures with an elementary cell possessing a mirror symmetry with respect to its center, a powerful analytical me
We investigate, within the framework of linear elasticity theory, edge Rayleigh waves of a two-dimensional elastic solid with broken time-reversal and parity symmetries due to a Berry term. As our prime example, we study the elastic edge wave traveli