ﻻ يوجد ملخص باللغة العربية
Screwdriving is one of the most popular industrial processes. As such, it is increasingly common to automate that procedure by using various robots. Even though the automation increases the efficiency of the screwdriving process, if the process is not monitored correctly, faults may occur during operation, which can impact the effectiveness and quality of assembly. Machine Learning (ML) has the potential to detect those undesirable events and limit their impact. In order to do so, first a dataset that fully describes the operation of an industrial robot performing automated screwdriving must be available. This report describes a dataset created using a UR3e series robot and OnRobot Screwdriver. We create different scenarios and introduce 4 types of anomalies to the process while all available robot and screwdriver sensors are continuously recorded. The resulting data contains 2042 samples of normal and anomalous robot operation. Brief ML benchmarks using this data are also provided, showcasing the datas suitability and potential for further analysis and experimentation.
Detecting faults in manufacturing applications can be difficult, especially if each fault model is to be engineered by hand. Data-driven approaches, using Machine Learning (ML) for detecting faults have recently gained increasing interest, where a ML
It is now well known that deep neural networks (DNNs) are vulnerable to adversarial attack. Adversarial samples are similar to the clean ones, but are able to cheat the attacked DNN to produce incorrect predictions in high confidence. But most of the
We propose OneFlow - a flow-based one-class classifier for anomaly (outliers) detection that finds a minimal volume bounding region. Contrary to density-based methods, OneFlow is constructed in such a way that its result typically does not depend on
In this article we present a novel underwater dataset collected from several field trials within the EU FP7 project Cognitive autonomous diving buddy (CADDY), where an Autonomous Underwater Vehicle (AUV) was used to interact with divers and monitor t
This paper explores the use of a Bayesian non-parametric topic modeling technique for the purpose of anomaly detection in video data. We present results from two experiments. The first experiment shows that the proposed technique is automatically abl