ترغب بنشر مسار تعليمي؟ اضغط هنا

Internal Language Model Training for Domain-Adaptive End-to-End Speech Recognition

122   0   0.0 ( 0 )
 نشر من قبل Zhong Meng
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

The efficacy of external language model (LM) integration with existing end-to-end (E2E) automatic speech recognition (ASR) systems can be improved significantly using the internal language model estimation (ILME) method. In this method, the internal LM score is subtracted from the score obtained by interpolating the E2E score with the external LM score, during inference. To improve the ILME-based inference, we propose an internal LM training (ILMT) method to minimize an additional internal LM loss by updating only the E2E model components that affect the internal LM estimation. ILMT encourages the E2E model to form a standalone LM inside its existing components, without sacrificing ASR accuracy. After ILMT, the more modular E2E model with matched training and inference criteria enables a more thorough elimination of the source-domain internal LM, and therefore leads to a more effective integration of the target-domain external LM. Experimented with 30K-hour trained recurrent neural network transducer and attention-based encoder-decoder models, ILMT with ILME-based inference achieves up to 31.5% and 11.4% relative word error rate reductions from standard E2E training with Shallow Fusion on out-of-domain LibriSpeech and in-domain Microsoft production test sets, respectively.

قيم البحث

اقرأ أيضاً

The external language models (LM) integration remains a challenging task for end-to-end (E2E) automatic speech recognition (ASR) which has no clear division between acoustic and language models. In this work, we propose an internal LM estimation (ILM E) method to facilitate a more effective integration of the external LM with all pre-existing E2E models with no additional model training, including the most popular recurrent neural network transducer (RNN-T) and attention-based encoder-decoder (AED) models. Trained with audio-transcript pairs, an E2E model implicitly learns an internal LM that characterizes the training data in the source domain. With ILME, the internal LM scores of an E2E model are estimated and subtracted from the log-linear interpolation between the scores of the E2E model and the external LM. The internal LM scores are approximated as the output of an E2E model when eliminating its acoustic components. ILME can alleviate the domain mismatch between training and testing, or improve the multi-domain E2E ASR. Experimented with 30K-hour trained RNN-T and AED models, ILME achieves up to 15.5% and 6.8% relative word error rate reductions from Shallow Fusion on out-of-domain LibriSpeech and in-domain Microsoft production test sets, respectively.
Integrating external language models (LMs) into end-to-end (E2E) models remains a challenging task for domain-adaptive speech recognition. Recently, internal language model estimation (ILME)-based LM fusion has shown significant word error rate (WER) reduction from Shallow Fusion by subtracting a weighted internal LM score from an interpolation of E2E model and external LM scores during beam search. However, on different test sets, the optimal LM interpolation weights vary over a wide range and have to be tuned extensively on well-matched validation sets. In this work, we perform LM fusion in the minimum WER (MWER) training of an E2E model to obviate the need for LM weights tuning during inference. Besides MWER training with Shallow Fusion (MWER-SF), we propose a novel MWER training with ILME (MWER-ILME) where the ILME-based fusion is conducted to generate N-best hypotheses and their posteriors. Additional gradient is induced when internal LM is engaged in MWER-ILME loss computation. During inference, LM weights pre-determined in MWER training enable robust LM integrations on test sets from different domains. Experimented with 30K-hour trained transformer transducers, MWER-ILME achieves on average 8.8% and 5.8% relative WER reductions from MWER and MWER-SF training, respectively, on 6 different test sets
Whereas conventional spoken language understanding (SLU) systems map speech to text, and then text to intent, end-to-end SLU systems map speech directly to intent through a single trainable model. Achieving high accuracy with these end-to-end models without a large amount of training data is difficult. We propose a method to reduce the data requirements of end-to-end SLU in which the model is first pre-trained to predict words and phonemes, thus learning good features for SLU. We introduce a new SLU dataset, Fluent Speech Commands, and show that our method improves performance both when the full dataset is used for training and when only a small subset is used. We also describe preliminary experiments to gauge the models ability to generalize to new phrases not heard during training.
In this paper, we present an end-to-end training framework for building state-of-the-art end-to-end speech recognition systems. Our training system utilizes a cluster of Central Processing Units(CPUs) and Graphics Processing Units (GPUs). The entire data reading, large scale data augmentation, neural network parameter updates are all performed on-the-fly. We use vocal tract length perturbation [1] and an acoustic simulator [2] for data augmentation. The processed features and labels are sent to the GPU cluster. The Horovod allreduce approach is employed to train neural network parameters. We evaluated the effectiveness of our system on the standard Librispeech corpus [3] and the 10,000-hr anonymized Bixby English dataset. Our end-to-end speech recognition system built using this training infrastructure showed a 2.44 % WER on test-clean of the LibriSpeech test set after applying shallow fusion with a Transformer language model (LM). For the proprietary English Bixby open domain test set, we obtained a WER of 7.92 % using a Bidirectional Full Attention (BFA) end-to-end model after applying shallow fusion with an RNN-LM. When the monotonic chunckwise attention (MoCha) based approach is employed for streaming speech recognition, we obtained a WER of 9.95 % on the same Bixby open domain test set.
In this paper, we demonstrate the efficacy of transfer learning and continuous learning for various automatic speech recognition (ASR) tasks. We start with a pre-trained English ASR model and show that transfer learning can be effectively and easily performed on: (1) different English accents, (2) different languages (German, Spanish and Russian) and (3) application-specific domains. Our experiments demonstrate that in all three cases, transfer learning from a good base model has higher accuracy than a model trained from scratch. It is preferred to fine-tune large models than small pre-trained models, even if the dataset for fine-tuning is small. Moreover, transfer learning significantly speeds up convergence for both very small and very large target datasets.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا