ﻻ يوجد ملخص باللغة العربية
We present a catalog of high-velocity CIV $lambda$ 1548,1551 mini-Broad Absorption Lines (mini-BALs) in the archives of the VLT-UVES and Keck-HIRES spectrographs. We identify high-velocity CIV mini-BALs based on smooth rounded BAL-like profiles with velocity blueshifts $<$ $-$4000 km/s and widths in the range 70 $lesssim$ FWHM(1548) $lesssim$ 2000 km/s (for $lambda$1548 alone). We find 105 mini-BALs in 44 quasars from a total sample of 638 quasars. The fraction of quasars with at least one mini-BAL meeting our criteria is roughly $sim9$% after correcting for incomplete velocity coverage. However, the numbers of systems rise sharply at lower velocities and narrower FWHMs, suggesting that many outflow lines are missed by our study. All of the systems are highly ionized based on the strong presence of NV and OVI and/or the absence of SiII and CII when within the wavelength coverage. Two of the mini-BAL systems in our catalog, plus three others at smaller velocity shifts, have PV $lambda$1118,1128 absorption indicating highly saturated CIV absorption and total hydrogen column densities $gtrsim 10^{22}$ cm$^{-3}$. Most of the mini-BALs are confirmed to have optical depths $gtrsim$1 with partial covering of the quasar continuum source. The covering fractions are as small as 0.06 in CIV and 0.03 in SiIV , corresponding to outflow absorbing structures $<0.002$ pc across. When multiple lines are measured, the lines of less abundant ions tend to have narrower profiles and smaller covering fractions indicative of inhomogeneous absorbers where higher column densities occur in smaller clumps. This picture might extend to BAL outflows if the broader and generally deeper BALs form in either the largest clumps or collections of many mini-BAL-like clumps that blend together in observed quasar spectra.
Quasar outflows have been posited as a mechanism to couple super-massive black holes to evolution in their host galaxies. We use multi-epoch spectra from the Hubble Space Telescope and ground-based observatories to study the outflows in seven quasars
To accurately interpret the observed properties of exoplanets, it is necessary to first obtain a detailed understanding of host star properties. However, physical models that analyze stellar properties on a per-star basis can become computationally i
A preliminary VLT-UVES spectrum of NGC 6302 (Casassus et al. 2002, MN), which hosts one of the hottest PN nuclei known (Teff ~ 220000 K; Wright et al. 2011, MN), has been recently analysed by means of X-SSN, a spectrum synthesis code for nebulae (Mor
Two recent papers (Ghez et al. 2008, Gillessen et al. 2009) have estimated the mass of and the distance to the massive black hole in the center of the Milky Way using stellar orbits. The two astrometric data sets are independent and yielded consisten
We report on an attempt to accurately wavelength calibrate four nights of data taken with the Keck HIRES spectrograph on QSO PHL957, for the purpose of determining whether the fine structure constant was different in the past. Using new software and