ﻻ يوجد ملخص باللغة العربية
Quasar outflows have been posited as a mechanism to couple super-massive black holes to evolution in their host galaxies. We use multi-epoch spectra from the Hubble Space Telescope and ground-based observatories to study the outflows in seven quasars that have CIV outflow lines ranging from a classic BAL to weaker/narrower mini-BALs across rest wavelengths of at least 850 $AA$ to 1650 $AA$. The CIV outflow lines all varied within a time frame of $leq$ 1.9 yrs (rest). This includes equal occurrences of strengthening and weakening plus the emergence of a new BAL system at $-$38,800 km/s accompanied by dramatic strengthening in a mini-BAL at $-$22,800 km/s. We infer from $sim$1:1 doublet ratios in PV and other lines that the BAL system is highly saturated with line-of-sight covering fractions ranging from 0.27 to 0.80 in the highest to lowest column density regions, respectively. Three of the mini-BALs also provide evidence for saturation and partial covering based on $sim$1:1 doublet ratios. We speculate that the BALs and mini-BALs form in similar clumpy/filamentary outflows, with mini-BALs identifying smaller or fewer clumps along our lines of sight. If we attribute the line variabilities to clumps crossing our lines of sight at roughly Keplerian speeds, then a typical variability time in our study, $sim$1.1 yrs, corresponds to a distance $sim$2 pc from the central black hole. Combining this with the speed and minimum total column density inferred from the PV BAL, $N_H gtrsim$ 2.5$times$10$^{22}$ cm$^{-2}$, suggests that the BAL outflow kinetic energy is in the range believed to be sufficient for feedback to galaxy evolution.
We present a catalog of high-velocity CIV $lambda$ 1548,1551 mini-Broad Absorption Lines (mini-BALs) in the archives of the VLT-UVES and Keck-HIRES spectrographs. We identify high-velocity CIV mini-BALs based on smooth rounded BAL-like profiles with
We present stellar kinematics for a sample of 10 early-type galaxies observed using the STIS aboard the Hubble Space Telescope, and the Modular Spectrograph on the MDM Observatory 2.4-m telescope. The spectra are used to derive line-of-sight velocity
Recent results from the ROSAT All Sky Survey, and from deep ROSAT pointings reveal that broad absorption line quasars (BALQSOs) are weak in the soft X-ray bandpass (with optical-to-X-ray spectral slope alpha_{ox}>1.8) in comparison to QSOs with norma
We introduce a Bayesian approach coupled with a Markov Chain Monte Carlo (MCMC) method and the maximum likelihood statistic for fitting the profiles of narrow absorption lines (NALs) in quasar spectra. This method also incorporates overlap between di
Recently, the direct detection of gravitational waves from black hole (BH) mergers was announced by the Advanced LIGO Collaboration. Multi-messenger counterparts of stellar-mass BH mergers are of interest, and it had been suggested that a small disk