ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic signatures on mixed-mode frequencies. I. An axisymmetric fossil field inside the core of red giants

110   0   0.0 ( 0 )
 نشر من قبل Lisa Bugnet
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The discovery of the moderate differential rotation between the core and the envelope of evolved solar-like stars could be the signature of a strong magnetic field trapped inside the radiative interior. The population of intermediate-mass red giants presenting a surprisingly low-amplitude of their mixed modes could also arise from the effect of an internal magnetic field. Indeed, stars more massive than about 1.1Ms are known to develop a convective core during their main sequence, which could relax into a strong fossil magnetic field trapped inside the core of the star for the rest of its evolution. The observations of mixed modes can constitute an excellent probe of the deepest layers of evolved solar-like stars. The magnetic perturbation on mixed modes may thus be visible in asteroseismic data. To unravel which constraints can be obtained from observations, we theoretically investigate the effects of a plausible mixed axisymmetric magnetic field with various amplitudes on the mixed-mode frequencies of evolved solar-like stars. The first-order frequency perturbations are computed for dipolar and quadrupolar mixed modes. These computations are carried out for a range of stellar ages, masses, and metallicities. We show that typical fossil-field strengths of 0.1-1 MG, consistent with the presence of a dynamo in the convective core during the main sequence, provoke significant asymmetries on mixed-mode frequency multiplets during the red-giant branch. We show that these signatures may be detectable in asteroseismic data for field amplitudes small enough for the amplitude of the modes not to be affected by the conversion of gravity into Alfven waves inside the magnetised interior. Finally, we infer an upper limit for the strength of the field, and the associated lower limit for the timescale of its action, to redistribute angular momentum in stellar interiors.

قيم البحث

اقرأ أيضاً

99 - L. Bugnet , V. Prat , S. Mathis 2020
Stars more massive than $sim 1.3$ M$_odot$ are known to develop a convective core during the main-sequence: the dynamo process triggered by this convection could be the origin of a strong magnetic field inside the core of the star, trapped when it be comes stably stratified and for the rest of its evolution. The presence of highly magnetized white dwarfs strengthens the hypothesis of buried fossil magnetic fields inside the core of evolved low-mass stars. If such a fossil field exists, it should affect the mixed modes of red giants as they are sensitive to processes affecting the deepest layers of these stars. The impact of a magnetic field on dipolar oscillations modes was one of Pr. Michael J. Thompsons research topics during the 90s when preparing the helioseismic SoHO space mission. As the detection of gravity modes in the Sun is still controversial, the investigation of the solar oscillation modes did not provide any hint of the existence of a magnetic field in the solar radiative core. Today we have access to the core of evolved stars thanks to the asteroseismic observation of mixed modes from CoRoT, Kepler, K2 and TESS missions. The idea of applying and generalizing the work done for the Sun came from discussions with Pr. Michael Thompson in early 2018 before we loss him. Following the path we drew together, we theoretically investigate the effect of a stable axisymmetric mixed poloidal and toroidal magnetic field, aligned with the rotation axis of the star, on the mixed modes frequencies of a typical evolved low-mass star. This enables us to estimate the magnetic perturbations to the eigenfrequencies of mixed dipolar modes, depending on the magnetic field strength and the evolutionary state of the star. We conclude that strong magnetic fields of $sim$ 1MG should perturbe the mixed-mode frequency pattern enough for its effects to be detectable inside current asteroseismic data.
The space-borne missions CoRoT and Kepler have already brought stringent constraints on the internal structure of low-mass evolved stars, a large part of which results from the detection of mixed modes. However, all the potential of these oscillation modes as a diagnosis of the stellar interior has not been fully exploited yet. In particular, the coupling factor or the gravity-offset of mixed modes, $q$ and $varepsilon_{rm g}$, are expected to provide additional constraints on the mid-layers of red giants, which are located between the hydrogen-burning shell and the neighborhood of the base of the convective zone. In the present paper, we investigate the potential of the coupling factor in probing the mid-layer structure of evolved stars. Guided by typical stellar models and general physical considerations, we modeled the coupling region along with evolution. We subsequently obtained an analytical expression of $q$ based on the asymptotic theory of mixed modes and compared it to observations. We show that the value of $q$ is degenerate with respect to the thickness of the coupling evanescent region and the local density scale height. A structural interpretation of the global variations in $q$ observed on the subgiant and the red giant branches, as well as on the red clump, was obtained in the light of this model. We demonstrate that $q$ has the promising potential to probe the migration of the base of the convective region as well as convective extra-mixing in evolved red giant stars with typically $ u_{rm max} lesssim 100~mu$Hz. We also show that the frequency-dependence of $q$ cannot be neglected in the oscillation spectra of such stars, which is in contrast with what is assumed in the current measurement methods. This analytical study paves the way for a more quantitative exploration of the link of $q$ with the internal properties of evolved stars using stellar models.
Turbulent motions in the convective envelope of red giants excite a rich spectrum of solar-like oscillation modes. Observations by CoRoT and Kepler have shown that the mode amplitudes increase dramatically as the stars ascend the red giant branch, i. e., as the frequency of maximum power, $ u_mathrm{max}$, decreases. Most studies nonetheless assume that the modes are well described by the linearized fluid equations. We investigate to what extent the linear approximation is justified as a function of stellar mass $M$ and $ u_mathrm{max}$, focusing on dipole mixed modes with frequency near $ u_mathrm{max}$. A useful measure of a modes nonlinearity is the product of its radial wavenumber and its radial displacement, $k_r xi_r$ (i.e., its shear). We show that $k_r xi_r propto u_mathrm{max}^{-9/2}$, implying that the nonlinearity of mixed modes increases significantly as a star evolves. The modes are weakly nonlinear ($k_r xi_r > 10^{-3}$) for $ u_mathrm{max} lesssim 150 , mumathrm{Hz}$ and strongly nonlinear ($k_r xi_r > 1$) for $ u_mathrm{max} lesssim 30 , mumathrm{Hz}$, with only a mild dependence on $M$ over the range we consider ($1.0 - 2.0 M_odot$). A weakly nonlinear mixed mode can excite secondary waves in the stellar core through the parametric instability, resulting in enhanced, but partial, damping of the mode. By contrast, a strongly nonlinear mode breaks as it propagates through the core and is fully damped there. Evaluating the impact of nonlinear effects on observables such as mode amplitudes and linewidths requires large mode network simulations. We plan to carry out such calculations in the future and investigate whether nonlinear damping can explain why some red giants exhibit dipole modes with unusually small amplitudes, known as depressed modes.
Oscillation modes with a mixed character, as observed in evolved low-mass stars, are highly sensitive to the physical properties of the innermost regions. Measuring their properties is therefore extremely important to probe the core, but requires som e care, due to the complexity of the mixed-mode pattern. This work aims at providing a consistent description of the mixed-mode pattern of low-mass stars, based on the asymptotic expansion. We also aim at studying the variation of the gravity offset $varepsilon_{g}$ with stellar evolution. We revisit previous work about mixed modes in red giants and empirically test how period spacings, rotational splittings, mixed-mode widths and heights can be estimated in a consistent view, based on the properties of the mode inertia ratios. From the asymptotic fit of the mixed-mode pattern of a large set of red giants at various evolutionary stages, we derive unbiased and precise asymptotic parameters. As the asymptotic expansion of gravity modes is verified with a precision close to the frequency resolution for stars on the red giant branch (10$^{-4}$ in relative values), we can derive accurate values of the asymptotic parameters. We decipher the complex pattern in a rapidly rotating star, and explain how asymmetrical splittings can be inferred, as well as the stellar inclinations. This allows us to revisit the stellar inclinations in two open clusters, NGC 6819 and NGC 6791: our results show that the stellar inclinations in these clusters do not have privileged orientation in the sky. The variation of the asymptotic gravity offset along with stellar evolution is investigated in detail. We also derive generic properties that explain under which conditions mixed modes can be observed.
The detection of oscillations with a mixed character in subgiants and red giants allows us to probe the physical conditions in their cores. With these mixed modes, we aim at determining seismic markers of stellar evolution. Kepler asteroseismic data were selected to map various evolutionary stages and stellar masses. Seismic evolutionary tracks were then drawn with the combination of the frequency and period spacings. We measured the asymptotic period spacing for more than 1170 stars at various evolutionary stages. This allows us to monitor stellar evolution from the main sequence to the asymptotic giant branch and draw seismic evolutionary tracks. We present clear quantified asteroseismic definitions that characterize the change in the evolutionary stages, in particular the transition from the subgiant stage to the early red giant branch, and the end of the horizontal branch.The seismic information is so precise that clear conclusions can be drawn independently of evolution models. The quantitative seismic information can now be used for stellar modeling, especially for studying the energy transport in the helium-burning core or for specifying the inner properties of stars entering the red or asymptotic giant branches. Modeling will also allow us to study stars that are identified to be in the helium-subflash stage, high-mass stars either arriving or quitting the secondary clump, or stars that could be in the blue-loop stage.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا