ﻻ يوجد ملخص باللغة العربية
The discovery of the moderate differential rotation between the core and the envelope of evolved solar-like stars could be the signature of a strong magnetic field trapped inside the radiative interior. The population of intermediate-mass red giants presenting a surprisingly low-amplitude of their mixed modes could also arise from the effect of an internal magnetic field. Indeed, stars more massive than about 1.1Ms are known to develop a convective core during their main sequence, which could relax into a strong fossil magnetic field trapped inside the core of the star for the rest of its evolution. The observations of mixed modes can constitute an excellent probe of the deepest layers of evolved solar-like stars. The magnetic perturbation on mixed modes may thus be visible in asteroseismic data. To unravel which constraints can be obtained from observations, we theoretically investigate the effects of a plausible mixed axisymmetric magnetic field with various amplitudes on the mixed-mode frequencies of evolved solar-like stars. The first-order frequency perturbations are computed for dipolar and quadrupolar mixed modes. These computations are carried out for a range of stellar ages, masses, and metallicities. We show that typical fossil-field strengths of 0.1-1 MG, consistent with the presence of a dynamo in the convective core during the main sequence, provoke significant asymmetries on mixed-mode frequency multiplets during the red-giant branch. We show that these signatures may be detectable in asteroseismic data for field amplitudes small enough for the amplitude of the modes not to be affected by the conversion of gravity into Alfven waves inside the magnetised interior. Finally, we infer an upper limit for the strength of the field, and the associated lower limit for the timescale of its action, to redistribute angular momentum in stellar interiors.
Stars more massive than $sim 1.3$ M$_odot$ are known to develop a convective core during the main-sequence: the dynamo process triggered by this convection could be the origin of a strong magnetic field inside the core of the star, trapped when it be
The space-borne missions CoRoT and Kepler have already brought stringent constraints on the internal structure of low-mass evolved stars, a large part of which results from the detection of mixed modes. However, all the potential of these oscillation
Turbulent motions in the convective envelope of red giants excite a rich spectrum of solar-like oscillation modes. Observations by CoRoT and Kepler have shown that the mode amplitudes increase dramatically as the stars ascend the red giant branch, i.
Oscillation modes with a mixed character, as observed in evolved low-mass stars, are highly sensitive to the physical properties of the innermost regions. Measuring their properties is therefore extremely important to probe the core, but requires som
The detection of oscillations with a mixed character in subgiants and red giants allows us to probe the physical conditions in their cores. With these mixed modes, we aim at determining seismic markers of stellar evolution. Kepler asteroseismic data