ﻻ يوجد ملخص باللغة العربية
Turbulent motions in the convective envelope of red giants excite a rich spectrum of solar-like oscillation modes. Observations by CoRoT and Kepler have shown that the mode amplitudes increase dramatically as the stars ascend the red giant branch, i.e., as the frequency of maximum power, $ u_mathrm{max}$, decreases. Most studies nonetheless assume that the modes are well described by the linearized fluid equations. We investigate to what extent the linear approximation is justified as a function of stellar mass $M$ and $ u_mathrm{max}$, focusing on dipole mixed modes with frequency near $ u_mathrm{max}$. A useful measure of a modes nonlinearity is the product of its radial wavenumber and its radial displacement, $k_r xi_r$ (i.e., its shear). We show that $k_r xi_r propto u_mathrm{max}^{-9/2}$, implying that the nonlinearity of mixed modes increases significantly as a star evolves. The modes are weakly nonlinear ($k_r xi_r > 10^{-3}$) for $ u_mathrm{max} lesssim 150 , mumathrm{Hz}$ and strongly nonlinear ($k_r xi_r > 1$) for $ u_mathrm{max} lesssim 30 , mumathrm{Hz}$, with only a mild dependence on $M$ over the range we consider ($1.0 - 2.0 M_odot$). A weakly nonlinear mixed mode can excite secondary waves in the stellar core through the parametric instability, resulting in enhanced, but partial, damping of the mode. By contrast, a strongly nonlinear mode breaks as it propagates through the core and is fully damped there. Evaluating the impact of nonlinear effects on observables such as mode amplitudes and linewidths requires large mode network simulations. We plan to carry out such calculations in the future and investigate whether nonlinear damping can explain why some red giants exhibit dipole modes with unusually small amplitudes, known as depressed modes.
Seismic observations have shown that a number of evolved stars exhibit low-amplitude dipole modes, which are referred to as depressed modes. Recently, these low amplitudes have been attributed to the presence of a strong magnetic field in the stellar
The detection of oscillations with a mixed character in subgiants and red giants allows us to probe the physical conditions in their cores. With these mixed modes, we aim at determining seismic markers of stellar evolution. Kepler asteroseismic data
The power of asteroseismology relies on the capability of global oscillations to infer the stellar structure. For evolved stars, we benefit from unique information directly carried out by mixed modes that probe their radiative cores. This third artic
Lots of information on solar-like oscillations in red giants has been obtained thanks to observations with CoRoT and Kepler space telescopes. Data on dipolar modes appear most interesting. We study properties of dipolar oscillations in luminous red g
The detection of mixed modes in subgiants and red giants by the CoRoT and emph{Kepler} space-borne missions allows us to investigate the internal structure of evolved low-mass stars. In particular, the measurement of the mean core rotation rate as a