ترغب بنشر مسار تعليمي؟ اضغط هنا

Reinforcement Learning for Decision-Making and Control in Power Systems: Tutorial, Review, and Vision

122   0   0.0 ( 0 )
 نشر من قبل Xin Chen
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

With large-scale integration of renewable generation and distributed energy resources (DERs), modern power systems are confronted with new operational challenges, such as growing complexity, increasing uncertainty, and aggravating volatility. Meanwhile, more and more data are becoming available owing to the widespread deployment of smart meters, smart sensors, and upgraded communication networks. As a result, data-driven control techniques, especially reinforcement learning (RL), have attracted surging attention in recent years. In this paper, we provide a tutorial on various RL techniques and how they can be applied to decision-making in power systems. We illustrate RL-based models and solutions in three key applications, frequency regulation, voltage control, and energy management. We conclude with three critical issues in the application of RL, i.e., safety, scalability, and data. Several potential future directions are discussed as well.



قيم البحث

اقرأ أيضاً

In this tutorial article, we aim to provide the reader with the conceptual tools needed to get started on research on offline reinforcement learning algorithms: reinforcement learning algorithms that utilize previously collected data, without additio nal online data collection. Offline reinforcement learning algorithms hold tremendous promise for making it possible to turn large datasets into powerful decision making engines. Effective offline reinforcement learning methods would be able to extract policies with the maximum possible utility out of the available data, thereby allowing automation of a wide range of decision-making domains, from healthcare and education to robotics. However, the limitations of current algorithms make this difficult. We will aim to provide the reader with an understanding of these challenges, particularly in the context of modern deep reinforcement learning methods, and describe some potential solutions that have been explored in recent work to mitigate these challenges, along with recent applications, and a discussion of perspectives on open problems in the field.
We introduce PowerGym, an open-source reinforcement learning environment for Volt-Var control in power distribution systems. Following OpenAI Gym APIs, PowerGym targets minimizing power loss and voltage violations under physical networked constraints . PowerGym provides four distribution systems (13Bus, 34Bus, 123Bus, and 8500Node) based on IEEE benchmark systems and design variants for various control difficulties. To foster generalization, PowerGym offers a detailed customization guide for users working with their distribution systems. As a demonstration, we examine state-of-the-art reinforcement learning algorithms in PowerGym and validate the environment by studying controller behaviors.
Learning from demonstrations has made great progress over the past few years. However, it is generally data hungry and task specific. In other words, it requires a large amount of data to train a decent model on a particular task, and the model often fails to generalize to new tasks that have a different distribution. In practice, demonstrations from new tasks will be continuously observed and the data might be unlabeled or only partially labeled. Therefore, it is desirable for the trained model to adapt to new tasks that have limited data samples available. In this work, we build an adaptable imitation learning model based on the integration of Meta-learning and Adversarial Inverse Reinforcement Learning (Meta-AIRL). We exploit the adversarial learning and inverse reinforcement learning mechanisms to learn policies and reward functions simultaneously from available training tasks and then adapt them to new tasks with the meta-learning framework. Simulation results show that the adapted policy trained with Meta-AIRL can effectively learn from limited number of demonstrations, and quickly reach the performance comparable to that of the experts on unseen tasks.
Reinforcement learning typically assumes that the state update from the previous actions happens instantaneously, and thus can be used for making future decisions. However, this may not always be true. When the state update is not available, the deci sion taken is partly in the blind since it cannot rely on the current state information. This paper proposes an approach, where the delay in the knowledge of the state can be used, and the decisions are made based on the available information which may not include the current state information. One approach could be to include the actions after the last-known state as a part of the state information, however, that leads to an increased state-space making the problem complex and slower in convergence. The proposed algorithm gives an alternate approach where the state space is not enlarged, as compared to the case when there is no delay in the state update. Evaluations on the basic RL environments further illustrate the improved performance of the proposed algorithm.
Reinforcement learning (RL) combines a control problem with statistical estimation: The system dynamics are not known to the agent, but can be learned through experience. A recent line of research casts `RL as inference and suggests a particular fram ework to generalize the RL problem as probabilistic inference. Our paper surfaces a key shortcoming in that approach, and clarifies the sense in which RL can be coherently cast as an inference problem. In particular, an RL agent must consider the effects of its actions upon future rewards and observations: The exploration-exploitation tradeoff. In all but the most simple settings, the resulting inference is computationally intractable so that practical RL algorithms must resort to approximation. We demonstrate that the popular `RL as inference approximation can perform poorly in even very basic problems. However, we show that with a small modification the framework does yield algorithms that can provably perform well, and we show that the resulting algorithm is equivalent to the recently proposed K-learning, which we further connect with Thompson sampling.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا