ترغب بنشر مسار تعليمي؟ اضغط هنا

Uniform quenching processes in a holographic s+p model with reentrance

53   0   0.0 ( 0 )
 نشر من قبل Zhang-Yu Nie
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the homogenous quenching processes in a holographic s+p model with reentrant phase transitions. We first realize the reentrant phase transition in the holographic model in probe limit and draw the phase diagram. Next, we compare the time evolution of the two condensates in two groups of numerical quenching experiments across the reentrant region, with different quenching speed as well as different width of the reentrant region, respectively. We also study the dynamical competition between the two orders in quenching processes from the normal phase to the superconductor phase.



قيم البحث

اقرأ أيضاً

We consider the generalization of the S-duality transformation previously investigated in the context of the FQHE and s-wave superconductivity to p-wave superconductivity in 2+1 dimensions in the framework of the AdS/CFT correspondence. The vector Co oper condensate transforms under the S-duality action to the pseudovector condensate at the dual side. The 3+1-dimensional Einstein-Yang-Mills theory, the holographic dual to p-wave superconductivity, is used to investigate the S-duality action via the AdS/CFT correspondence. It is shown that in order to implement the duality transformation, chemical potentials both on the electric and magnetic side of the duality have to be introduced. A relation for the product of the nonabelian conductivities in the dual models is derived. We also conjecture a flavor S-duality transformation in the holographic dual to 3+1-dimensional QCD low-energy QCD with non-abelian flavor gauge groups. The conjectured S-duality interchanges isospin and baryonic chemical potentials.
704 - Rong-Gen Cai , Li Li , Li-Fang Li 2013
We continue our study of entanglement entropy in the holographic superconducting phase transitions. In this paper we consider the holographic p-wave superconductor/insulator model, where as the back reaction increases, the transition is changed from second order to first order. We find that unlike the s-wave case, there is no additional first order transition in the superconducting phase. We calculate the entanglement entropy for two strip geometries. One is parallel to the super current, and the other is orthogonal to the super current. In both cases, we find that the entanglement entropy monotonically increases with respect to the chemical potential.
In the probe limit, we numerically construct a holographic p-wave superfluid model in the 4D and 5D AdS black holes coupled to a Maxwell-complex vector field. We find that, for the condensate with the fixed superfluid velocity, the results are simi lar to the s-wave cases in both 4D and 5D spacetimes. In particular, The Cave of Winds and the phase transition always being the second order take place in the 5D case. Moreover, we find the second-first order translating point $frac{S_y}{mu}$ increases with the mass squared. Furthermore, for the supercurrent with the fixed temperature, the results agree with the GL prediction near the critical temperature. In addition, this complex vector superfluid model is still a generalization of the SU(2) superfluid model, and also provides a holographic realization of the $He_3$ superfluid system.
We consider the backreaction of the fundamental flavor degrees of freedom on the AdS$_5$-Schwarz background, and calculate their contributions to the shear viscosity and jet-quenching parameter of the thermal quark-gluon plasma.
We consider a holographic model constructed through using the D4/D8-$bar{rm D8}$ brane configuration with a background field. We study some properties of the effective field theory in this intersecting brane construction, and calculate the effects of this NS-NS background field on some underlying dynamics. We also discuss some other general brane configurations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا