ﻻ يوجد ملخص باللغة العربية
We study the homogenous quenching processes in a holographic s+p model with reentrant phase transitions. We first realize the reentrant phase transition in the holographic model in probe limit and draw the phase diagram. Next, we compare the time evolution of the two condensates in two groups of numerical quenching experiments across the reentrant region, with different quenching speed as well as different width of the reentrant region, respectively. We also study the dynamical competition between the two orders in quenching processes from the normal phase to the superconductor phase.
We consider the generalization of the S-duality transformation previously investigated in the context of the FQHE and s-wave superconductivity to p-wave superconductivity in 2+1 dimensions in the framework of the AdS/CFT correspondence. The vector Co
We continue our study of entanglement entropy in the holographic superconducting phase transitions. In this paper we consider the holographic p-wave superconductor/insulator model, where as the back reaction increases, the transition is changed from
In the probe limit, we numerically construct a holographic p-wave superfluid model in the 4D and 5D AdS black holes coupled to a Maxwell-complex vector field. We find that, for the condensate with the fixed superfluid velocity, the results are simi
We consider the backreaction of the fundamental flavor degrees of freedom on the AdS$_5$-Schwarz background, and calculate their contributions to the shear viscosity and jet-quenching parameter of the thermal quark-gluon plasma.
We consider a holographic model constructed through using the D4/D8-$bar{rm D8}$ brane configuration with a background field. We study some properties of the effective field theory in this intersecting brane construction, and calculate the effects of