ترغب بنشر مسار تعليمي؟ اضغط هنا

The Kostka semigroup and its Hilbert basis

124   0   0.0 ( 0 )
 نشر من قبل Joshua Kiers
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The Kostka semigroup consists of pairs of partitions with at most r parts that have positive Kostka coefficient. For this semigroup, Hilbert basis membership is an NP-complete problem. We introduce KGR graphs and conservative subtrees, through the Gale-Ryser theorem on contingency tables, as a criterion for membership. In our main application, we show that if a partition pair is in the Hilbert basis then the partitions are at most r wide. We also classify the extremal rays of the associated polyhedral cone; these rays correspond to a (strict) subset of the Hilbert basis. In an appendix, the second and third authors show that a natural extension of our main result on the Kostka semigroup cannot be extended to the Littlewood-Richardson semigroup. This furthermore gives a counterexample to a recent speculation of P. Belkale concerning the semigroup controlling nonvanishing conformal blocks.



قيم البحث

اقرأ أيضاً

256 - Mariemi Alonso 2009
In this paper, we give new explicit representations of the Hilbert scheme of $mu$ points in $PP^{r}$ as a projective subvariety of a Grassmanniann variety. This new explicit description of the Hilbert scheme is simpler than the previous ones and glob al. It involves equations of degree $2$. We show how these equations are deduced from the commutation relations characterizing border bases. Next, we consider infinitesimal perturbations of an input system of equations on this Hilbert scheme and describe its tangent space. We propose an effective criterion to test if it is a flat deformation, that is if the perturbed system remains on the Hilbert scheme of the initial equations. This criterion involves in particular formal reduction with respect to border bases.
We show that the Galois group of any Schubert problem involving lines in projective space contains the alternating group. Using a criterion of Vakil and a special position argument due to Schubert, this follows from a particular inequality among Kost ka numbers of two-rowed tableaux. In most cases, an easy combinatorial injection proves the inequality. For the remaining cases, we use that these Kostka numbers appear in tensor product decompositions of sl_2(C)-modules. Interpreting the tensor product as the action of certain commuting Toeplitz matrices and using a spectral analysis and Fourier series rewrites the inequality as the positivity of an integral. We establish the inequality by estimating this integral.
Springer fibers are subvarieties of the flag variety that play an important role in combinatorics and geometric representation theory. In this paper, we analyze the equivariant cohomology of Springer fibers for $GL_n(mathbb{C})$ using results of Kuma r and Procesi that describe this equivariant cohomology as a quotient ring. We define a basis for the equivariant cohomology of a Springer fiber, generalizing a monomial basis of the ordinary cohomology defined by De Concini and Procesi and studied by Garsia and Procesi. Our construction yields a combinatorial framework with which to study the equivariant and ordinary cohomology rings of Springer fibers. As an application, we identify an explicit collection of (equivariant) Schubert classes whose images in the (equivariant) cohomology ring of a given Springer fiber form a basis.
131 - Daniel Orr , Mark Shimozono 2017
For any triple $(i,a,mu)$ consisting of a vertex $i$ in a quiver $Q$, a positive integer $a$, and a dominant $GL_a$-weight $mu$, we define a quiver current $H^{(i,a)}_mu$ acting on the tensor power $Lambda^Q$ of symmetric functions over the vertices of $Q$. These provide a quiver generalization of parabolic Garsia-Jing creation operators in the theory of Hall-Littlewood symmetric functions. For a triple $(mathbf{i},mathbf{a},mu(bullet))$ of sequences of such data, we define the quiver Hall-Littlewood function $H^{mathbf{i},mathbf{a}}_{mu(bullet)}$ as the result of acting on $1inLambda^Q$ by the corresponding sequence of quiver currents. The quiver Kostka-Shoji polynomials are the expansion coefficients of $H^{mathbf{i},mathbf{a}}_{mu(bullet)}$ in the tensor Schur basis. These polynomials include the Kostka-Foulkes polynomials and parabolic Kostka polynomials (Jordan quiver) and the Kostka-Shoji polynomials (cyclic quiver) as special cases. We show that the quiver Kostka-Shoji polynomials are graded multiplicities in the equivariant Euler characteristic of a vector bundle on Lusztigs convolution diagram determined by the sequences $mathbf{i},mathbf{a}$. For certain compositions of currents we conjecture higher cohomology vanishing of the associated vector bundle on Lusztigs convolution diagram. For quivers with no branching we propose an explicit positive formula for the quiver Kostka-Shoji polynomials in terms of catabolizable multitableaux. We also relate our constructions to $K$-theoretic Hall algebras, by realizing the quiver Kostka-Shoji polynomials as natural structure constants and showing that the quiver currents provide a symmetric function lifting of the corresponding shuffle product. In the case of a cyclic quiver, we explain how the quiver currents arise in Saitos vertex representation of the quantum toroidal algebra of type $mathfrak{sl}_r$.
151 - L. A. Bokut , Y. Fong , W.-F. Ke 2008
We found Groebner-Shirshov basis for the braid semigroup $B^+_{n+1}$. It gives a new algorithm for the solution of the word problem for the braid semigroup and so for the braid group.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا