ترغب بنشر مسار تعليمي؟ اضغط هنا

An equivariant basis for the cohomology of Springer fibers

198   0   0.0 ( 0 )
 نشر من قبل Martha Precup
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Springer fibers are subvarieties of the flag variety that play an important role in combinatorics and geometric representation theory. In this paper, we analyze the equivariant cohomology of Springer fibers for $GL_n(mathbb{C})$ using results of Kumar and Procesi that describe this equivariant cohomology as a quotient ring. We define a basis for the equivariant cohomology of a Springer fiber, generalizing a monomial basis of the ordinary cohomology defined by De Concini and Procesi and studied by Garsia and Procesi. Our construction yields a combinatorial framework with which to study the equivariant and ordinary cohomology rings of Springer fibers. As an application, we identify an explicit collection of (equivariant) Schubert classes whose images in the (equivariant) cohomology ring of a given Springer fiber form a basis.



قيم البحث

اقرأ أيضاً

180 - Aba Mbirika 2009
The Springer variety is the set of flags stabilized by a nilpotent operator. In 1976, T.A. Springer observed that this varietys cohomology ring carries a symmetric group action, and he offered a deep geometric construction of this action. Sixteen yea rs later, Garsia and Procesi made Springers work more transparent and accessible by presenting the cohomology ring as a graded quotient of a polynomial ring. They combinatorially describe an explicit basis for this quotient. The goal of this paper is to generalize their work. Our main result deepens their analysis of Springer varieties and extends it to a family of varieties called Hessenberg varieties, a two-parameter generalization of Springer varieties. Little is known about their cohomology. For the class of regular nilpotent Hessenberg varieties, we conjecture a quotient presentation for the cohomology ring and exhibit an explicit basis. Tantalizing new evidence supports our conjecture for a subclass of regular nilpotent varieties called Peterson varieties.
Recent work of Shareshian and Wachs, Brosnan and Chow, and Guay-Paquet connects the well-known Stanley-Stembridge conjecture in combinatorics to the dot action of the symmetric group $S_n$ on the cohomology rings $H^*(Hess(S,h))$ of regular semisimpl e Hessenberg varieties. In particular, in order to prove the Stanley-Stembridge conjecture, it suffices to construct (for any Hessenberg function $h$) a permutation basis of $H^*(Hess(S,h))$ whose elements have stabilizers isomorphic to Young subgroups. In this manuscript we give several results which contribute toward this goal. Specifically, in some special cases, we give a new, purely combinatorial construction of classes in the $T$-equivariant cohomology ring $H^*_T(Hess(S,h))$ which form permutation bases for subrepresentations in $H^*_T(Hess(S,h))$. Moreover, from the definition of our classes it follows that the stabilizers are isomorphic to Young subgroups. Our constructions use a presentation of the $T$-equivariant cohomology rings $H^*_T(Hess(S,h))$ due to Goresky, Kottwitz, and MacPherson. The constructions presented in this manuscript generalize past work of Abe-Horiguchi-Masuda, Chow, and Cho-Hong-Lee.
Springer fibers are subvarieties of the flag variety parametrized by partitions; they are central objects of study in geometric representation theory. Schubert varieties are subvarieties of the flag variety that induce a well-known basis for the coho mology of the flag variety. This paper relates these two varieties combinatorially. We prove that the Betti numbers of the Springer fiber associated to a partition with at most three rows or two columns are equal to the Betti numbers of a specific union of Schubert varieties.
We study the exotic t-structure on the derived category of coherent sheaves on two-block Springer fibre (i.e. for a nilpotent matrix of type (m+n,n) in type A). The exotic t-structure has been defined by Bezrukavnikov and Mirkovic for Springer theore tic varieties in order to study representations of Lie algebras in positive characteristic. Using work of Cautis and Kamnitzer, we construct functors indexed by affine tangles, between categories of coherent sheaves on different two-block Springer fibres (i.e. for different values of n). After checking some exactness properties of these functors, we describe the irreducible objects in the heart of the exotic t-structure, and enumerate them by crossingless (m,m+2n) matchings. We compute the Exts between the irreducible objects, and show that the resulting algebras are an annular variant of Khovanovs arc algebras. In subsequent work we will make a link with annular Khovanov homology, and use these results to give a positive characteristic analogue of some categorification results using two-block parabolic category O (by Bernstein-Frenkel-Khovanov, Brundan, Stroppel, et al).
We give an explicit description of the irreducible components of two-row Springer fibers in type A as closed subvarieties in certain Nakajima quiver varieties in terms of quiver representations. By taking invariants under a variety automorphism, we o btain an explicit algebraic description of the irreducible components of two-row Springer fibers of classical type. As a consequence, we discover relations on isotropic flags that describe the irreducible components.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا