ﻻ يوجد ملخص باللغة العربية
MESA (Mainz Energy recovery Superconducting Accelerator) is an energy recovery linac (ERL) which is under construction at Johannes Gutenberg University in Mainz. It will be operated in external beam (EB) mode with 150 $mu$A electron beam at 155 MeV and energy recovery (ER) mode with 1 mA (first stage) and later 10 mA (second stage) electron beam at 105 MeV. An important factor which may limit performance of the machine is a beam breakup (BBU) instability which may occur due to excitation of higher-order modes (HOMs) in superconducting RF cavities. This effect occurs only when the injected beam current exceeds a threshold value. The aim of the present work is to develop a software for reliable determination of the threshold current in MESA, find main factors which may change its value and finally make a decision concerning capability of MESA operation at 10 mA and need for additional measures for suppressing BBU instability.
The maximum beam current can be accelerated in an Energy Recovery Linac (ERL) can be severely limited by the transverse multi-pass beam breakup instability (BBU), especially in future ERL light sources with multi-GeV high energy beam energy and more
Moderate ion mobility provides a source of damping in the plasma wakefield acceleration, which may serve as an effective remedy against the transverse instability of the trailing bunch. Ion mobility in the fields of the driving and trailing bunches i
The Long Baseline Neutrino Experiment (LBNE) will utilize a neutrino beamline facility located at Fermilab. The facility is designed to aim a beam of neutrinos toward a detector placed in South Dakota. The neutrinos are produced in a three-step proce
The fast beam-ion instability (FII) is caused by the interaction of an electron bunch train with the residual gas ions. The ion oscillations in the potential well of the electron beam have an inherent frequency spread due to the nonlinear profile of
The machine described in this document is an advanced Source of up to 20 MeV Gamma Rays based on Compton back-scattering, i.e. collision of an intense high power laser beam and a high brightness electron beam with maximum kinetic energy of about 720