ﻻ يوجد ملخص باللغة العربية
Minute amount of long chain flexible polymer dissolved in a turbulent flow can drastically change flow properties, such as reducing the drag and enhancing mixing. One fundamental riddle is how these polymer additives interact with the eddies of different spatial scales existing in the turbulent flow and in turn alter the turbulence energy transfer. Here we show how turbulent kinetic energy is transferred through deferent scales in the presence of the polymer additives. In particular, we observed experimentally the emerging of a new scaling range, referred to as the elastic range, where increasing amount of energy is transferred by the elasticity of the polymers. In addition, the existence of the elastic range prescribes the scaling of high-order velocity statistics. Our findings have important implications to many turbulence systems such as turbulence in plasmas or superfluids where interaction between turbulent eddies and other nonlinear physical mechanisms are often involved.
We present direct numerical simulations of turbulent channel flow with passive Lagrangian polymers. To understand the polymer behavior we investigate the behavior of infinitesimal line elements and calculate the probability distribution function (PDF
We study single-phase and particulate turbulent channel flows, bounded by two incompressible hyper-elastic walls. Different wall elasticities are considered with and without a 10% volume fraction of finite-size rigid spherical particles, while elasti
We show that viscoelastic plane Poiseuille flow becomes linearly unstable in the absence of inertia, in the limit of high elasticities, for ultra-dilute polymer solutions. While inertialess elastic instabilities have been predicted for curvilinear sh
We investigate the gravitational settling of a long, model elastic filament in homogeneous isotropic turbulence. We show that the flow produces a strongly fluctuating settling velocity, whose mean is moderately enhanced over the still-fluid terminal
A string of tracers, interacting elastically, in a turbulent flow is shown to have a dramatically different behaviour when compared to the non-interacting case. In particular, such an elastic chain shows strong preferential sampling of the turbulent