ترغب بنشر مسار تعليمي؟ اضغط هنا

Designing AI for Trust and Collaboration in Time-Constrained Medical Decisions: A Sociotechnical Lens

78   0   0.0 ( 0 )
 نشر من قبل Maia Jacobs
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Major depressive disorder is a debilitating disease affecting 264 million people worldwide. While many antidepressant medications are available, few clinical guidelines support choosing among them. Decision support tools (DSTs) embodying machine learning models may help improve the treatment selection process, but often fail in clinical practice due to poor system integration. We use an iterative, co-design process to investigate clinicians perceptions of using DSTs in antidepressant treatment decisions. We identify ways in which DSTs need to engage with the healthcare sociotechnical system, including clinical processes, patient preferences, resource constraints, and domain knowledge. Our results suggest that clinical DSTs should be designed as multi-user systems that support patient-provider collaboration and offer on-demand explanations that address discrepancies between predictions and current standards of care. Through this work, we demonstrate how current trends in explainable AI may be inappropriate for clinical environments and consider paths towards designing these tools for real-world medical systems.

قيم البحث

اقرأ أيضاً

In this paper, we present results from a human-subject study designed to explore two facets of human mental models of robots---inferred capability and intention---and their relationship to overall trust and eventual decisions. In particular, we exami ne delegation situations characterized by uncertainty, and explore how inferred capability and intention are applied across different tasks. We develop an online survey where human participants decide whether to delegate control to a simulated UAV agent. Our study shows that human estimations of robot capability and intent correlate strongly with overall self-reported trust. However, overall trust is not independently sufficient to determine whether a human will decide to trust (delegate) a given task to a robot. Instead, our study reveals that estimations of robot intention, capability, and overall trust are integrated when deciding to delegate. From a broader perspective, these results suggest that calibrating overall trust alone is insufficient; to make correct decisions, humans need (and use) multi-faceted mental models when collaborating with robots across multiple contexts.
Organizations are rapidly deploying artificial intelligence (AI) systems to manage their workers. However, AI has been found at times to be unfair to workers. Unfairness toward workers has been associated with decreased worker effort and increased wo rker turnover. To avoid such problems, AI systems must be designed to support fairness and redress instances of unfairness. Despite the attention related to AI unfairness, there has not been a theoretical and systematic approach to developing a design agenda. This paper addresses the issue in three ways. First, we introduce the organizational justice theory, three different fairness types (distributive, procedural, interactional), and the frameworks for redressing instances of unfairness (retributive justice, restorative justice). Second, we review the design literature that specifically focuses on issues of AI fairness in organizations. Third, we propose a design agenda for AI fairness in organizations that applies each of the fairness types to organizational scenarios. Then, the paper concludes with implications for future research.
Human-machine complementarity is important when neither the algorithm nor the human yield dominant performance across all instances in a given domain. Most research on algorithmic decision-making solely centers on the algorithms performance, while re cent work that explores human-machine collaboration has framed the decision-making problems as classification tasks. In this paper, we first propose and then develop a solution for a novel human-machine collaboration problem in a bandit feedback setting. Our solution aims to exploit the human-machine complementarity to maximize decision rewards. We then extend our approach to settings with multiple human decision makers. We demonstrate the effectiveness of our proposed methods using both synthetic and real human responses, and find that our methods outperform both the algorithm and the human when they each make decisions on their own. We also show how personalized routing in the presence of multiple human decision-makers can further improve the human-machine team performance.
The rapid advancement of artificial intelligence (AI) is changing our lives in many ways. One application domain is data science. New techniques in automating the creation of AI, known as AutoAI or AutoML, aim to automate the work practices of data s cientists. AutoAI systems are capable of autonomously ingesting and pre-processing data, engineering new features, and creating and scoring models based on a target objectives (e.g. accuracy or run-time efficiency). Though not yet widely adopted, we are interested in understanding how AutoAI will impact the practice of data science. We conducted interviews with 20 data scientists who work at a large, multinational technology company and practice data science in various business settings. Our goal is to understand their current work practices and how these practices might change with AutoAI. Reactions were mixed: while informants expressed concerns about the trend of automating their jobs, they also strongly felt it was inevitable. Despite these concerns, they remained optimistic about their future job security due to a view that the future of data science work will be a collaboration between humans and AI systems, in which both automation and human expertise are indispensable.
People supported by AI-powered decision support tools frequently overrely on the AI: they accept an AIs suggestion even when that suggestion is wrong. Adding explanations to the AI decisions does not appear to reduce the overreliance and some studies suggest that it might even increase it. Informed by the dual-process theory of cognition, we posit that people rarely engage analytically with each individual AI recommendation and explanation, and instead develop general heuristics about whether and when to follow the AI suggestions. Building on prior research on medical decision-making, we designed three cognitive forcing interventions to compel people to engage more thoughtfully with the AI-generated explanations. We conducted an experiment (N=199), in which we compared our three cognitive forcing designs to two simple explainable AI approaches and to a no-AI baseline. The results demonstrate that cognitive forcing significantly reduced overreliance compared to the simple explainable AI approaches. However, there was a trade-off: people assigned the least favorable subjective ratings to the designs that reduced the overreliance the most. To audit our work for intervention-generated inequalities, we investigated whether our interventions benefited equally people with different levels of Need for Cognition (i.e., motivation to engage in effortful mental activities). Our results show that, on average, cognitive forcing interventions benefited participants higher in Need for Cognition more. Our research suggests that human cognitive motivation moderates the effectiveness of explainable AI solutions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا