ترغب بنشر مسار تعليمي؟ اضغط هنا

Urban Change Detection by Fully Convolutional Siamese Concatenate Network with Attention

63   0   0.0 ( 0 )
 نشر من قبل Peyman Setoodeh
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Change detection (CD) is an important problem in remote sensing, especially in disaster time for urban management. Most existing traditional methods for change detection are categorized based on pixel or objects. Object-based models are preferred to pixel-based methods for handling very high-resolution remote sensing (VHR RS) images. Such methods can benefit from the ongoing research on deep learning. In this paper, a fully automatic change-detection algorithm on VHR RS images is proposed that deploys Fully Convolutional Siamese Concatenate networks (FC-Siam-Conc). The proposed method uses preprocessing and an attention gate layer to improve accuracy. Gaussian attention (GA) as a soft visual attention mechanism is used for preprocessing. GA helps the network to handle feature maps like biological visual systems. Since the GA parameters cannot be adjusted during network training, an attention gate layer is introduced to play the role of GA with parameters that can be tuned among other network parameters. Experimental results obtained on Onera Satellite Change Detection (OSCD) and RIVER-CD datasets confirm the superiority of the proposed architecture over the state-of-the-art algorithms.



قيم البحث

اقرأ أيضاً

Change detection is a basic task of remote sensing image processing. The research objective is to identity the change information of interest and filter out the irrelevant change information as interference factors. Recently, the rise of deep learnin g has provided new tools for change detection, which have yielded impressive results. However, the available methods focus mainly on the difference information between multitemporal remote sensing images and lack robustness to pseudo-change information. To overcome the lack of resistance of current methods to pseudo-changes, in this paper, we propose a new method, namely, dual attentive fully convolutional Siamese networks (DASNet) for change detection in high-resolution images. Through the dual-attention mechanism, long-range dependencies are captured to obtain more discriminant feature representations to enhance the recognition performance of the model. Moreover, the imbalanced sample is a serious problem in change detection, i.e. unchanged samples are much more than changed samples, which is one of the main reasons resulting in pseudo-changes. We put forward the weighted double margin contrastive loss to address this problem by punishing the attention to unchanged feature pairs and increase attention to changed feature pairs. The experimental results of our method on the change detection dataset (CDD) and the building change detection dataset (BCDD) demonstrate that compared with other baseline methods, the proposed method realizes maximum improvements of 2.1% and 3.6%, respectively, in the F1 score. Our Pytorch implementation is available at https://github.com/lehaifeng/DASNet.
Mainstream object detectors based on the fully convolutional network has achieved impressive performance. While most of them still need a hand-designed non-maximum suppression (NMS) post-processing, which impedes fully end-to-end training. In this pa per, we give the analysis of discarding NMS, where the results reveal that a proper label assignment plays a crucial role. To this end, for fully convolutional detectors, we introduce a Prediction-aware One-To-One (POTO) label assignment for classification to enable end-to-end detection, which obtains comparable performance with NMS. Besides, a simple 3D Max Filtering (3DMF) is proposed to utilize the multi-scale features and improve the discriminability of convolutions in the local region. With these techniques, our end-to-end framework achieves competitive performance against many state-of-the-art detectors with NMS on COCO and CrowdHuman datasets. The code is available at https://github.com/Megvii-BaseDetection/DeFCN .
70 - Junzheng Wu , Biao Li , Yao Qin 2021
Change detection (CD) in remote sensing images has been an ever-expanding area of research. To date, although many methods have been proposed using various techniques, accurately identifying changes is still a great challenge, especially in the high resolution or heterogeneous situations, due to the difficulties in effectively modeling the features from ground objects with different patterns. In this paper, a novel CD method based on the graph convolutional network (GCN) and multiscale object-based technique is proposed for both homogeneous and heterogeneous images. First, the object-wise high level features are obtained through a pre-trained U-net and the multiscale segmentations. Treating each parcel as a node, the graph representations can be formed and then, fed into the proposed multiscale graph convolutional network with each channel corresponding to one scale. The multiscale GCN propagates the label information from a small number of labeled nodes to the other ones which are unlabeled. Further, to comprehensively incorporate the information from the output channels of multiscale GCN, a fusion strategy is designed using the father-child relationships between scales. Extensive Experiments on optical, SAR and heterogeneous optical/SAR data sets demonstrate that the proposed method outperforms some state-of the-art methods in both qualitative and quantitative evaluations. Besides, the Influences of some factors are also discussed.
Crack is one of the most common road distresses which may pose road safety hazards. Generally, crack detection is performed by either certified inspectors or structural engineers. This task is, however, time-consuming, subjective and labor-intensive. In this paper, we propose a novel road crack detection algorithm based on deep learning and adaptive image segmentation. Firstly, a deep convolutional neural network is trained to determine whether an image contains cracks or not. The images containing cracks are then smoothed using bilateral filtering, which greatly minimizes the number of noisy pixels. Finally, we utilize an adaptive thresholding method to extract the cracks from road surface. The experimental results illustrate that our network can classify images with an accuracy of 99.92%, and the cracks can be successfully extracted from the images using our proposed thresholding algorithm.
Most change detection methods assume that pre-change and post-change images are acquired by the same sensor. However, in many real-life scenarios, e.g., natural disaster, it is more practical to use the latest available images before and after the oc currence of incidence, which may be acquired using different sensors. In particular, we are interested in the combination of the images acquired by optical and Synthetic Aperture Radar (SAR) sensors. SAR images appear vastly different from the optical images even when capturing the same scene. Adding to this, change detection methods are often constrained to use only target image-pair, no labeled data, and no additional unlabeled data. Such constraints limit the scope of traditional supervised machine learning and unsupervised generative approaches for multi-sensor change detection. Recent rapid development of self-supervised learning methods has shown that some of them can even work with only few images. Motivated by this, in this work we propose a method for multi-sensor change detection using only the unlabeled target bi-temporal images that are used for training a network in self-supervised fashion by using deep clustering and contrastive learning. The proposed method is evaluated on four multi-modal bi-temporal scenes showing change and the benefits of our self-supervised approach are demonstrated.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا