ترغب بنشر مسار تعليمي؟ اضغط هنا

M2FN: Multi-step Modality Fusion for Advertisement Image Assessment

125   0   0.0 ( 0 )
 نشر من قبل Kyung-Wha Park
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Kyung-Wha Park




اسأل ChatGPT حول البحث

Assessing advertisements, specifically on the basis of user preferences and ad quality, is crucial to the marketing industry. Although recent studies have attempted to use deep neural networks for this purpose, these studies have not utilized image-related auxiliary attributes, which include embedded text frequently found in ad images. We, therefore, investigated the influence of these attributes on ad image preferences. First, we analyzed large-scale real-world ad log data and, based on our findings, proposed a novel multi-step modality fusion network (M2FN) that determines advertising images likely to appeal to user preferences. Our method utilizes auxiliary attributes through multiple steps in the network, which include conditional batch normalization-based low-level fusion and attention-based high-level fusion. We verified M2FN on the AVA dataset, which is widely used for aesthetic image assessment, and then demonstrated that M2FN can achieve state-of-the-art performance in preference prediction using a real-world ad dataset with rich auxiliary attributes.



قيم البحث

اقرأ أيضاً

Point clouds and RGB images are naturally complementary modalities for 3D visual understanding - the former provides sparse but accurate locations of points on objects, while the latter contains dense color and texture information. Despite this poten tial for close sensor fusion, many methods train two models in isolation and use simple feature concatenation to represent 3D sensor data. This separated training scheme results in potentially sub-optimal performance and prevents 3D tasks from being used to benefit 2D tasks that are often useful on their own. To provide a more integrated approach, we propose a novel Multi-Modality Task Cascade network (MTC-RCNN) that leverages 3D box proposals to improve 2D segmentation predictions, which are then used to further refine the 3D boxes. We show that including a 2D network between two stages of 3D modules significantly improves both 2D and 3D task performance. Moreover, to prevent the 3D module from over-relying on the overfitted 2D predictions, we propose a dual-head 2D segmentation training and inference scheme, allowing the 2nd 3D module to learn to interpret imperfect 2D segmentation predictions. Evaluating our model on the challenging SUN RGB-D dataset, we improve upon state-of-the-art results of both single modality and fusion networks by a large margin ($textbf{+3.8}$ [email protected]). Code will be released $href{https://github.com/Divadi/MTC_RCNN}{text{here.}}$
135 - Arnaud Martin 2008
In image classification, merging the opinion of several human experts is very important for different tasks such as the evaluation or the training. Indeed, the ground truth is rarely known before the scene imaging. We propose here different models in order to fuse the informations given by two or more experts. The considered unit for the classification, a small tile of the image, can contain one or more kind of the considered classes given by the experts. A second problem that we have to take into account, is the amount of certainty of the expert has for each pixel of the tile. In order to solve these problems we define five models in the context of the Dempster-Shafer Theory and in the context of the Dezert-Smarandache Theory and we study the possible decisions with these models.
124 - Huai Chen , Yuxiao Qi , Yong Yin 2018
Segmentation of nasopharyngeal carcinoma (NPC) from Magnetic Resonance Images (MRI) is a crucial prerequisite for NPC radiotherapy. However, manually segmenting of NPC is time-consuming and labor-intensive. Additionally, single-modality MRI generally cannot provide enough information for its accurate delineation. Therefore, a multi-modality MRI fusion network (MMFNet) based on three modalities of MRI (T1, T2 and contrast-enhanced T1) is proposed to complete accurate segmentation of NPC. The backbone of MMFNet is designed as a multi-encoder-based network, consisting of several encoders to capture modality-specific features and one single decoder to fuse them and obtain high-level features for NPC segmentation. A fusion block is presented to effectively fuse features from multi-modality MRI. It firstly recalibrates low-level features captured from modality-specific encoders to highlight both informative features and regions of interest, then fuses weighted features by a residual fusion block to keep balance between fused ones and high-level features from decoder. Moreover, a training strategy named self-transfer, which utilizes pre-trained modality-specific encoders to initialize multi-encoder-based network, is proposed to make full mining of information from different modalities of MRI. The proposed method based on multi-modality MRI can effectively segment NPC and its advantages are validated by extensive experiments.
We propose a framework for aligning and fusing multiple images into a single coordinate-based neural representations. Our framework targets burst images that have misalignment due to camera ego motion and small changes in the scene. We describe diffe rent strategies for alignment depending on the assumption of the scene motion, namely, perspective planar (i.e., homography), optical flow with minimal scene change, and optical flow with notable occlusion and disocclusion. Our framework effectively combines the multiple inputs into a single neural implicit function without the need for selecting one of the images as a reference frame. We demonstrate how to use this multi-frame fusion framework for various layer separation tasks.
It is counter-intuitive that multi-modality methods based on point cloud and images perform only marginally better or sometimes worse than approaches that solely use point cloud. This paper investigates the reason behind this phenomenon. Due to the f act that multi-modality data augmentation must maintain consistency between point cloud and images, recent methods in this field typically use relatively insufficient data augmentation. This shortage makes their performance under expectation. Therefore, we contribute a pipeline, named transformation flow, to bridge the gap between single and multi-modality data augmentation with transformation reversing and replaying. In addition, considering occlusions, a point in different modalities may be occupied by different objects, making augmentations such as cut and paste non-trivial for multi-modality detection. We further present Multi-mOdality Cut and pAste (MoCa), which simultaneously considers occlusion and physical plausibility to maintain the multi-modality consistency. Without using ensemble of detectors, our multi-modality detector achieves new state-of-the-art performance on nuScenes dataset and competitive performance on KITTI 3D benchmark. Our method also wins the best PKL award in the 3rd nuScenes detection challenge. Code and models will be released at https://github.com/open-mmlab/mmdetection3d.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا