ترغب بنشر مسار تعليمي؟ اضغط هنا

Broadband highly efficient nonlinear optical processes in on-chip integrated lithium niobate microdisk resonators of Q-factor above 10^8

333   0   0.0 ( 0 )
 نشر من قبل Haisu Zhang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrated broadband highly efficient optical nonlinear processes in on-chip integrated lithium niobate (LN) microdisk resonators. The Q factors of the micro-resonators fabricated by femtosecond laser writing and chemo-mechanical polishing are reliably above 10^8, approaching the intrinsic material absorption limit of LN. Broadband nonlinear processes, including optical parametric oscillation (OPO), second harmonic generation (SHG), third harmonic generation, and fourth harmonic generation, were observed with ultrahigh efficiencies in the same LN microdisk without introducing domain inversion, thanks to the natural quasi phase-matching and the dense spectral modes of the X-cut LN microdisk with millimeter diameter. The threshold of OPO and the absolute conversion efficiency of SHG are 19.6 microwatt and 66%, both surpass the state-of-the-art values among on-chip LN micro-resonators demonstrated so far. The broadband and highly efficient nonlinear frequency

قيم البحث

اقرأ أيضاً

We demonstrate ultra-high Q factor microring resonators close to the intrinsic material absorption limit on lithium niobate on insulator. The microrings are fabricated on pristine lithium niobate (LN) thin film wafer thinned from LN bulk via chemo-me chanical etching without ion slicing and ion etching. A record-high Q factor up to times ten to the power of 8th at the wavelength of 1550 nm is achieved because of the ultra-smooth interface of the microrings and the absence of ion induced lattice damage, indicating an ultra-low waveguide propagation loss of about 0.28 dB per meter. The ultra-high Q microrings will pave the way for integrated quantum light source, frequency comb generation, and nonlinear optical processes.
Erbium-doped lithium niobate high-Q microdisk cavities were fabricated in batches by UV exposure, inductively coupled plasma reactive ion etching and chemo-mechanical polishing. The stimulated emission at 1531.6 nm was observed under the pump of a na rrow-band laser working at 974 nm in erbium-doped lithium niobate microdisk cavity with threshold down to 400 {mu}W and a conversion efficiency of 3.1{times}10^{-4} %, laying the foundation for the LNOI integrated light source research.
The measurement and stabilization of the carrier-envelope offset frequency $f_{textrm{CEO}}$ via self-referencing is paramount for optical frequency comb generation which has revolutionized precision frequency metrology, spectroscopy, and optical clo cks. Over the past decade, the development of chip-scale platforms has enabled compact integrated waveguides for supercontinuum generation. However, there is a critical need for an on-chip self-referencing system that is adaptive to different pump wavelengths, requires low pulse energy, and does not require complicated processing. Here, we demonstrate efficient carrier-envelope offset frequency $f_{textrm{CEO}}$ stabilization of a modelocked laser with only 107 pJ of pulse energy via self-referencing in an integrated lithium niobate waveguide. We realize an $f$-$2f$ interferometer through second-harmonic generation and subsequent supercontinuum generation in a single dispersion-engineered waveguide with a stabilization performance equivalent to a conventional off-chip module. The $f_{textrm{CEO}}$ beatnote is measured over a pump wavelength range of 70 nm. We theoretically investigate our system using a single nonlinear envelope equation with contributions from both second- and third-order nonlinearities. Our modeling reveals rich ultrabroadband nonlinear dynamics and confirms that the initial second harmonic generation followed by supercontinuum generation with the remaining pump is responsible for the generation of a strong $f_{textrm{CEO}}$ signal as compared to a traditional $f$-$2f$ interferometer. Our technology provides a highly-simplified system that is robust, low cost, and adaptable for precision metrology for use outside a research laboratory.
138 - Yuan Zhou , Zhe Wang , Zhiwei Fang 2021
We demonstrate an on-chip Yb3+-doped lithium niobate (LN) microdisk laser. The intrinsic quality factors of the fabricated Yb3+-doped LN microdisk resonator are measured up to 3.79x10^5 at 976 nm wavelength and 1.1x10^6 at 1514 nm wavelength. The mul ti-mode laser emissions are obtained in a band from 1020 nm to 1070 nm pumped by 984 nm laser and with the low threshold of 103 {mu}W, resulting in a slope efficiency of 0.53% at room temperature. Furthermore, the second-harmonic frequency of pump light and the sum-frequency of the pump light and laser emissions are both generated in the on-chip Yb3+-doped LN microdisk benefited from the strong c{hi}(2) nonlinearity of LN. These microdisk lasers are expected to contribute to the high-density integration of LNOI-based photonic chip.
Future quantum networks in which superconducting quantum processors are connected via optical links, will require microwave-to-optical photon converters that preserve entanglement. A doubly-resonant electro-optic modulator (EOM) is a promising platfo rm to realize this conversion. Here, we present our progress towards building such a modulator by demonstrating the optically-resonant half of the device. We demonstrate high quality factor ring, disk and photonic crystal resonators using a hybrid silicon-on-lithium-niobate material system. Optical quality factors up to 730,000 are achieved, corresponding to propagation loss of 0.8 dB/cm. We also use the electro-optic effect to modulate the resonance frequency of a photonic crystal cavity, achieving a electro-optic modulation coefficient between 1 and 2 pm/V. In addition to quantum technology, we expect that our results will be useful both in traditional silicon photonics applications and in high-sensitivity acousto-optic devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا