ترغب بنشر مسار تعليمي؟ اضغط هنا

Size and Depth Separation in Approximating Benign Functions with Neural Networks

78   0   0.0 ( 0 )
 نشر من قبل Gal Vardi
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

When studying the expressive power of neural networks, a main challenge is to understand how the size and depth of the network affect its ability to approximate real functions. However, not all functions are interesting from a practical viewpoint: functions of interest usually have a polynomially-bounded Lipschitz constant, and can be computed efficiently. We call functions that satisfy these conditions benign, and explore the benefits of size and depth for approximation of benign functions with ReLU networks. As we show, this problem is more challenging than the corresponding problem for non-benign functions. We give barriers to showing depth-lower-bounds: Proving existence of a benign function that cannot be approximated by polynomial-size networks of depth $4$ would settle longstanding open problems in computational complexity. It implies that beyond depth $4$ there is a barrier to showing depth-separation for benign functions, even between networks of constant depth and networks of nonconstant depth. We also study size-separation, namely, whether there are benign functions that can be approximated with networks of size $O(s(d))$, but not with networks of size $O(s(d))$. We show a complexity-theoretic barrier to proving such results beyond size $O(dlog^2(d))$, but also show an explicit benign function, that can be approximated with networks of size $O(d)$ and not with networks of size $o(d/log d)$. For approximation in $L_infty$ we achieve such separation already between size $O(d)$ and size $o(d)$. Moreover, we show superpolynomial size lower bounds and barriers to such lower bounds, depending on the assumptions on the function. Our size-separation results rely on an analysis of size lower bounds for Boolean functions, which is of independent interest: We show linear size lower bounds for computing explicit Boolean functions with neural networks and threshold circuits.



قيم البحث

اقرأ أيضاً

Several recent works have shown separation results between deep neural networks, and hypothesis classes with inferior approximation capacity such as shallow networks or kernel classes. On the other hand, the fact that deep networks can efficiently ex press a target function does not mean that this target function can be learned efficiently by deep neural networks. In this work we study the intricate connection between learnability and approximation capacity. We show that learnability with deep networks of a target function depends on the ability of simpler classes to approximate the target. Specifically, we show that a necessary condition for a function to be learnable by gradient descent on deep neural networks is to be able to approximate the function, at least in a weak sense, with shallow neural networks. We also show that a class of functions can be learned by an efficient statistical query algorithm if and only if it can be approximated in a weak sense by some kernel class. We give several examples of functions which demonstrate depth separation, and conclude that they cannot be efficiently learned, even by a hypothesis class that can efficiently approximate them.
Recent work has attempted to interpret residual networks (ResNets) as one step of a forward Euler discretization of an ordinary differential equation, focusing mainly on syntactic algebraic similarities between the two systems. Discrete dynamical int egrators of continuous dynamical systems, however, have a much richer structure. We first show that ResNets fail to be meaningful dynamical integrators in this richer sense. We then demonstrate that neural network models can learn to represent continuous dynamical systems, with this richer structure and properties, by embedding them into higher-order numerical integration schemes, such as the Runge Kutta schemes. Based on these insights, we introduce ContinuousNet as a continuous-in-depth generalization of ResNet architectures. ContinuousNets exhibit an invariance to the particular computational graph manifestation. That is, the continuous-in-depth model can be evaluated with different discrete time step sizes, which changes the number of layers, and different numerical integration schemes, which changes the graph connectivity. We show that this can be used to develop an incremental-in-depth training scheme that improves model quality, while significantly decreasing training time. We also show that, once trained, the number of units in the computational graph can even be decreased, for faster inference with little-to-no accuracy drop.
209 - Tong Mao , Zhongjie Shi , 2021
We consider a family of deep neural networks consisting of two groups of convolutional layers, a downsampling operator, and a fully connected layer. The network structure depends on two structural parameters which determine the numbers of convolution al layers and the width of the fully connected layer. We establish an approximation theory with explicit approximation rates when the approximated function takes a composite form $fcirc Q$ with a feature polynomial $Q$ and a univariate function $f$. In particular, we prove that such a network can outperform fully connected shallow networks in approximating radial functions with $Q(x) =|x|^2$, when the dimension $d$ of data from $mathbb{R}^d$ is large. This gives the first rigorous proof for the superiority of deep convolutional neural networks in approximating functions with special structures. Then we carry out generalization analysis for empirical risk minimization with such a deep network in a regression framework with the regression function of the form $fcirc Q$. Our network structure which does not use any composite information or the functions $Q$ and $f$ can automatically extract features and make use of the composite nature of the regression function via tuning the structural parameters. Our analysis provides an error bound which decreases with the network depth to a minimum and then increases, verifying theoretically a trade-off phenomenon observed for network depths in many practical applications.
We present polynomial time and sample efficient algorithms for learning an unknown depth-2 feedforward neural network with general ReLU activations, under mild non-degeneracy assumptions. In particular, we consider learning an unknown network of the form $f(x) = {a}^{mathsf{T}}sigma({W}^mathsf{T}x+b)$, where $x$ is drawn from the Gaussian distribution, and $sigma(t) := max(t,0)$ is the ReLU activation. Prior works for learning networks with ReLU activations assume that the bias $b$ is zero. In order to deal with the presence of the bias terms, our proposed algorithm consists of robustly decomposing multiple higher order tensors arising from the Hermite expansion of the function $f(x)$. Using these ideas we also establish identifiability of the network parameters under minimal assumptions.
We give new quantum algorithms for evaluating composed functions whose inputs may be shared between bottom-level gates. Let $f$ be an $m$-bit Boolean function and consider an $n$-bit function $F$ obtained by applying $f$ to conjunctions of possibly o verlapping subsets of $n$ variables. If $f$ has quantum query complexity $Q(f)$, we give an algorithm for evaluating $F$ using $tilde{O}(sqrt{Q(f) cdot n})$ quantum queries. This improves on the bound of $O(Q(f) cdot sqrt{n})$ that follows by treating each conjunction independently, and our bound is tight for worst-case choices of $f$. Using completely different techniques, we prove a similar tight composition theorem for the approximate degree of $f$. By recursively applying our composition theorems, we obtain a nearly optimal $tilde{O}(n^{1-2^{-d}})$ upper bound on the quantum query complexity and approximate degree of linear-size depth-$d$ AC$^0$ circuits. As a consequence, such circuits can be PAC learned in subexponential time, even in the challenging agnostic setting. Prior to our work, a subexponential-time algorithm was not known even for linear-size depth-3 AC$^0$ circuits. As an additional consequence, we show that AC$^0 circ oplus$ circuits of depth $d+1$ require size $tilde{Omega}(n^{1/(1- 2^{-d})}) geq omega(n^{1+ 2^{-d}} )$ to compute the Inner Product function even on average. The previous best size lower bound was $Omega(n^{1+4^{-(d+1)}})$ and only held in the worst case (Cheraghchi et al., JCSS 2018).

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا