ﻻ يوجد ملخص باللغة العربية
Sound event detection is a core module for acoustic environmental analysis. Semi-supervised learning technique allows to largely scale up the dataset without increasing the annotation budget, and recently attracts lots of research attention. In this work, we study on two advanced semi-supervised learning techniques for sound event detection. Data augmentation is important for the success of recent deep learning systems. This work studies the audio-signal random augmentation method, which provides an augmentation strategy that can handle a large number of different audio transformations. In addition, consistency regularization is widely adopted in recent state-of-the-art semi-supervised learning methods, which exploits the unlabelled data by constraining the prediction of different transformations of one sample to be identical to the prediction of this sample. This work finds that, for semi-supervised sound event detection, consistency regularization is an effective strategy, especially the best performance is achieved when it is combined with the MeanTeacher model.
The ranking of sound event detection (SED) systems may be biased by assumptions inherent to evaluation criteria and to the choice of an operating point. This paper compares conventional event-based and segment-based criteria against the Polyphonic So
This report presents the dataset and baseline of Task 3 of the DCASE2021 Challenge on Sound Event Localization and Detection (SELD). The dataset is based on emulation of real recordings of static or moving sound events under real conditions of reverb
While multitask and transfer learning has shown to improve the performance of neural networks in limited data settings, they require pretraining of the model on large datasets beforehand. In this paper, we focus on improving the performance of weakly
This paper proposes a network architecture mainly designed for audio tagging, which can also be used for weakly supervised acoustic event detection (AED). The proposed network consists of a modified DenseNet as the feature extractor, and a global ave
This paper presents our work of training acoustic event detection (AED) models using unlabeled dataset. Recent acoustic event detectors are based on large-scale neural networks, which are typically trained with huge amounts of labeled data. Labels fo