ترغب بنشر مسار تعليمي؟ اضغط هنا

A Detailed View of the Broad Line Region in NGC 3783 from Velocity-Resolved Reverberation Mapping

86   0   0.0 ( 0 )
 نشر من قبل Misty Bentz
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have modeled the full velocity-resolved reverberation response of the H$beta$ and He II optical broad emission lines in NGC 3783 to constrain the geometry and kinematics of the low-ionization and high-ionization broad line region. The geometry is found to be a thick disk that is nearly face on, inclined at $sim 18^{circ}$ to our line of sight, and exhibiting clear ionization stratification, with an extended H$beta$-emitting region ($r_{rm median}=10.07^{+1.10}_{-1.12}$ light days) and a more compact and centrally-located He II-emitting region ($r_{rm median}=1.33^{+0.34}_{-0.42}$ light days). In the H$beta$-emitting region, the kinematics are dominated by near-circular Keplerian orbits, but with $sim 40$% of the orbits inflowing. The more compact He II-emitting region, on the other hand, appears to be dominated by outflowing orbits. The black hole mass is constrained to be $M_{rm BH}=2.82^{+1.55}_{-0.63}times10^7$ $M_{odot}$, which is consistent with the simple reverberation constraint on the mass based on a mean time delay, line width, and scale factor of $langle f rangle=4.82$. The difference in kinematics between the H$beta$- and He II-emitting regions of the BLR is intriguing given the recent history of large changes in the ionizing luminosity of NGC 3783 and evidence for possible changes in the BLR structure as a result.



قيم البحث

اقرأ أيضاً

199 - K. D. Denney 2009
A detailed analysis of the data from a high sampling rate, multi-month reverberation mapping campaign, undertaken primarily at MDM Observatory with supporting observations from telescopes around the world, reveals that the Hbeta emission region withi n the broad line regions (BLRs) of several nearby AGNs exhibit a variety of kinematic behaviors. While the primary goal of this campaign was to obtain either new or improved Hbeta reverberation lag measurements for several relatively low luminosity AGNs (presented in a separate work), we were also able to unambiguously reconstruct velocity-resolved reverberation signals from a subset of our targets. Through high cadence spectroscopic monitoring of the optical continuum and broad Hbeta emission line variations observed in the nuclear regions of NGC 3227, NGC 3516, and NGC 5548, we clearly see evidence for outflowing, infalling, and virialized BLR gas motions, respectively.
NGC 2617 has attracted a lot of attention after the detection of the changes in spectral type, and its geometry and kinematics of broad-line region (BLR) are still ambiguous. In this paper, we present the high cadence ($sim$ 2 days) reverberation map ping campaign of NGC 2617 from 2019 October to 2020 May undertaken at Lijiang 2.4 m telescope. For the first time, the velocity-resolved reverberation signature of the object was successfully detected. Both H$alpha$ and H$beta$ show an asymmetrical profile with a peak in the velocity-resolved time lags. For each of both lines, the lag of the line core is longer than those of the relevant wings, and the peak of the velocity-resolved lags is slightly blueshifted. These characteristics are not consistent with the theoretical prediction of the inflow, outflow or Keplerian disk model. Our observations give the time lags ofH$alpha$, H$beta$, H$gamma$, and He I, with a ratio of $tau_{rm{H}alpha}$:$tau_{rm{H}beta}$:$tau_{rm{H}gamma}$:$tau_{rm{He~I}}$ = 1.27:1.00:0.89:0.20, which indicates a stratified structure in the BLR of the object. It is the first time that the lags of H$alpha$ and He I are obtained. Assuming a virial factor of $f$ = 5.5 for dispersion width of line, the masses of black hole derived from H$alpha$ and H$beta$ are $rm{23.8^{+5.4}_{-2.7}}$ and $rm{21.1^{+3.8}_{-4.4}} times 10^{6}M_{odot}$, respectively. Our observed results indicate the complexity of the BLR of NGC 2617.
We present geometric and dynamical modeling of the broad line region for the multi-wavelength reverberation mapping campaign focused on NGC 5548 in 2014. The dataset includes photometric and spectroscopic monitoring in the optical and ultraviolet, co vering the H$beta$, C IV, and Ly$alpha$ broad emission lines. We find an extended disk-like H$beta$ BLR with a mixture of near-circular and outflowing gas trajectories, while the C IV and Ly$alpha$ BLRs are much less extended and resemble shell-like structures. There is clear radial structure in the BLR, with C IV and Ly$alpha$ emission arising at smaller radii than the H$beta$ emission. Using the three lines, we make three independent black hole mass measurements, all of which are consistent. Combining these results gives a joint inference of $log_{10}(M_{rm BH}/M_odot) = 7.64^{+0.21}_{-0.18}$. We examine the effect of using the $V$ band instead of the UV continuum light curve on the results and find a size difference that is consistent with the measured UV-optical time lag, but the other structural and kinematic parameters remain unchanged, suggesting that the $V$ band is a suitable proxy for the ionizing continuum when exploring the BLR structure and kinematics. Finally, we compare the H$beta$ results to similar models of data obtained in 2008 when the AGN was at a lower luminosity state. We find that the size of the emitting region increased during this time period, but the geometry and black hole mass remain unchanged, which confirms that the BLR kinematics suitably gauge the gravitational field of the central black hole.
Despite many decades of study, the kinematics of the broad-line region of 3C~273 are still poorly understood. We report a new, high signal-to-noise, reverberation mapping campaign carried out from November 2008 to March 2018 that allows the determina tion of time lags between emission lines and the variable continuum with high precision. The time lag of variations in H$beta$ relative to those of the 5100 Angstrom continuum is $146.8_{-12.1}^{+8.3}$ days in the rest frame, which agrees very well with the Paschen-$alpha$ region measured by the GRAVITY at The Very Large Telescope Interferometer. The time lag of the H$gamma$ emission line is found to be nearly the same as for H$beta$. The lag of the Fe II emission is $322.0_{-57.9}^{+55.5}$ days, longer by a factor of $sim$2 than that of the Balmer lines. The velocity-resolved lag measurements of the H$beta$ line show a complex structure which can be possibly explained by a rotation-dominated disk with some inflowing radial velocity in the H$beta$-emitting region. Taking the virial factor of $f_{rm BLR} = 1.3$, we derive a BH mass of $M_{bullet} = 4.1_{-0.4}^{+0.3} times 10^8 M_{odot}$ and an accretion rate of $9.3,L_{rm Edd},c^{-2}$ from the H$beta$ line. The decomposition of its $HST$ images yields a host stellar mass of $M_* = 10^{11.3 pm 0.7} M_odot$, and a ratio of $M_{bullet}/M_*approx 2.0times 10^{-3}$ in agreement with the Magorrian relation. In the near future, it is expected to compare the geometrically-thick BLR discovered by the GRAVITY in 3C 273 with its spatially-resolved torus in order to understand the potential connection between the BLR and the torus.
The combination of the linear size from reverberation mapping (RM) and the angular distance of the broad line region (BLR) from spectroastrometry (SA) in active galactic nuclei (AGNs) can be used to measure the Hubble constant $H_0$. Recently, Wang e t al. (2020) successfully employed this approach and estimated $H_0$ from 3C 273. However, there may be a systematic deviation between the response-weighted radius (RM measurement) and luminosity-weighted radius (SA measurement), especially when different broad lines are adopted for size indicators (e.g., hb for RM and pa for SA). Here we evaluate the size deviations measured by six pairs of hydrogen lines (e.g., hb, ha and pa) via the locally optimally emitting cloud (LOC) models of BLR. We find that the radius ratios $K$(=$R_{rm SA}$/$R_{rm RM}$) of the same line deviated systematically from 1 (0.85-0.88) with dispersions between 0.063-0.083. Surprisingly, the $K$ values from the pa(SA)/hb(RM) and ha(SA)/hb(RM) pairs not only are closest to 1 but also have considerably smaller uncertainty. Considering the current infrared interferometry technology, the pa(SA)/hb(RM) pair is the ideal choice for the low redshift objects in the SARM project. In the future, the ha(SA)/hb(RM) pair could be used for the high redshift luminous quasars. These theoretical estimations of the SA/RM radius pave the way for the future SARM measurements to further constrain the standard cosmological model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا