ترغب بنشر مسار تعليمي؟ اضغط هنا

Electronic correlations at paramagnetic $(001)$ and $(110)$ NiO surfaces: Charge-transfer and Mott-Hubbard-type gaps at the surface and subsurface of $(110)$ NiO

73   0   0.0 ( 0 )
 نشر من قبل Ivan Leonov
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore the interplay of electron-electron correlations and surface effects in the prototypical correlated insulating material, NiO. In particular, we compute the electronic structure, magnetic properties, and surface energies of the $(001)$ and $(110)$ surfaces of paramagnetic NiO using a fully charge self-consistent DFT+DMFT method. Our results reveal a complex interplay between electronic correlations and surface effects in NiO, with the electronic structure of the $(001)$ and $(110)$ NiO surfaces being significantly different from that in bulk NiO. We obtain a sizeable reduction of the band gap at the surface of NiO, which is most significant for the $(110)$ NiO surface. This suggests a higher catalytic activity of the $(110)$ NiO surface than that of the $(001)$ NiO one. Our results reveal a charge-transfer character of the $(001)$ and $(110)$ surfaces of NiO. Most notably, for the $(110)$ NiO surface we observe a remarkable electronic state characterized by an alternating charge-transfer and Mott-Hubbard character of the band gap in the surface and subsurface NiO layers, respectively. This novel form of electronic order stabilized by strong correlations is not driven by lattice reconstructions but of purely electronic origin. We notice the importance of orbital-differentiation of the Ni $e_g$ states to characterize the Mott-Hubbard insulating state of the $(001)$ and $(110)$ NiO surfaces. The unoccupied Ni $e_g$ surface states are seen to split from the lower edge of the conduction band to form strongly localized states in the fundamental gap of bulk NiO. Our results for the surface energies of the $(001)$ and $(110)$ NiO surfaces show that the $(001)$ facet of NiO has significantly lower energy. This implies that the relative stability of different surfaces, at least from a purely energetic point of view, does not depend on the presence or absence of magnetic order in NiO.

قيم البحث

اقرأ أيضاً

The evolution of the electronic structures of strongly correlated insulators with doping has long been a central fundamental question in condensed matter physics; it is also of great practical relevance for applications. We have studied the evolution of NiO under hole {em and} electron doping using high-quality thin film and a wide range of experimental and theoretical methods. The evolution is in both cases very smooth with dopant concentration. The band gap is asymmetric under electron and hole doping, consistent with a charge-transfer insulator picture, and is reduced faster under hole than electron doping. For both electron and hole doping, occupied states are introduced at the top of the valence band. The formation of deep donor levels under electron doping and the inability to pin otherwise empty states near the conduction band edge is indicative that local electron addition and removal energies are dominated by a Mott-like Hubbard $U$-interaction even though the global bandgap is predominantly a charge-transfer type gap.
Electron gases at the surfaces of (001), (110), and (111) oriented SrTiO3 (STO) have been created using Ar+-irradiation with fully metallic behavior and low-temperature-mobility as large as 5500 cm2V-1s-1, 1300 cm2V-1s-1 and 8600 cm2V-1s-1 for (001)- , (110)-, and (111)-surfaces, respectively. The in-plane anisotropic magnetoresistance (AMR) have been studied for the samples with the current along different crystal axis directions to subtract the Lorentz Force effect. The AMR shows features which coincide with the fixed orientations to the crystalline axes, with 4-fold, 2-fold and nearly-6-fold symmetries for (001)-, (110) and (111)-surfaces, respectively, independent of the current directions. These features are possibly caused by the polarization of spin orbit texture of the 2D Fermi surfaces. In addition, a 6-fold to 2-fold symmetry breaking for (111)-surfaces is observed. Our results demonstrate the effect of symmetry of two-dimensional electronic structure on the transport behaviors for the electron gases at STO surfaces.
The possibility of magnetic-order induced phonon anisotropy in single crystals of MnO and NiO is investigated using inelastic neutron scattering. Below Tn both compounds exhibit a splitting in their transverse optical phonon spectra of approximately 10%. This behavior illustrates that, contrary to general assumption, the dynamic properties of MnO and NiO are substantially non-cubic.
69 - Maolin Bo , Li Lei , Chuang Yao 2018
We investigated the mechanism of Na/Ta(110) and Ta/Na(110) interfaces using a combination of bond band barrier (BBB) and zone selective electron spectroscopy (ZES) correlation. We found that 7/9 ML and 8/9 ML Ta metal on a Na(110) surface form one di mensional (1D) chain and two dimensional (2D) ring structures, respectively. Moreover, we show that on Na(110), the Ta-induced Na(110) surface binding energy (BE) shifts are dominated by quantum entrapment. On the contrary, on a Ta(110) surface, the Na-induced Ta(110) surface BE shifts are dominated by polarization. Thus, the BBB and ZES strategy could potentially be used for designing 1D and 2D metals with desired structures and properties.
The method of electronic structure calculations for strongly correlated disordered materials is developed employing the basic idea of coherent potential approximation (CPA). Evolution of electronic structure and spin magnetic moment value with concen tration $x$ in strongly correlated Ni$_{1-x}$Zn$_x$O solid solutions is investigated in the frame of this method. The obtained values of energy gap and magnetic moment are in agreement with the available experimental data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا