ترغب بنشر مسار تعليمي؟ اضغط هنا

CPA for strongly correlated systems: Electronic structure and magnetic properties of NiO-ZnO solid solutions

251   0   0.0 ( 0 )
 نشر من قبل Zlata Pchelkina
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The method of electronic structure calculations for strongly correlated disordered materials is developed employing the basic idea of coherent potential approximation (CPA). Evolution of electronic structure and spin magnetic moment value with concentration $x$ in strongly correlated Ni$_{1-x}$Zn$_x$O solid solutions is investigated in the frame of this method. The obtained values of energy gap and magnetic moment are in agreement with the available experimental data.



قيم البحث

اقرأ أيضاً

The crystal structures and the physical (magnetic, electrical transport and thermodynamic) properties of the ternary compounds CeRhSi2 and Ce2Rh3Si5 (orthorhombic CeNiSi2- and U2Co3Si5-type structures, respectively) were studied in wide ranges of tem perature and magnetic field strength. The results revealed that both materials are valence fluctuating systems, in line with previous literature reports. Direct evidence for valence fluctuations was obtained by means of Ce LIII-edge x-ray absorption spectroscopy and Ce 3d core-level x-ray photoelectron spectroscopy. The experimental data were confronted with the results of ab initio calculations of the electronic band structures in both compounds.
The search for semiconductors with high thermoelectric figure of merit has been greatly aided by theoretical modeling of electron and phonon transport, both in bulk materials and in nanocomposites. Recent experiments have studied thermoelectric trans port in ``strongly correlated materials derived by doping Mott insulators, whose insulating behavior without doping results from electron-electron repulsion, rather than from band structure as in semiconductors. Here a unified theory of electrical and thermal transport in the atomic and ``Heikes limit is applied to understand recent transport experiments on sodium cobaltate and other doped Mott insulators at room temperature and above. For optimal electron filling, a broad class of narrow-bandwidth correlated materials are shown to have power factors (the electronic portion of the thermoelectric figure of merit) as high at and above room temperature as in the best semiconductors.
We calculate ground-state energies and density distributions of Hubbard superlattices characterized by periodic modulations of the on-site interaction and the on-site potential. Both density-matrix renormalization group and density-functional methods are employed and compared. We find that small variations in the on-site potential $v_i$ can simulate, cancel, or even overcompensate effects due to much larger variations in the on-site interaction $U_i$. Our findings highlight the importance of nanoscale spatial inhomogeneity in strongly correlated systems, and call for reexamination of model calculations assuming spatial homogeneity.
A versatile method for combining density functional theory (DFT) in the local density approximation (LDA) with dynamical mean-field theory (DMFT) is presented. Starting from a general basis-independent formulation, we use Wannier functions as an inte rface between the two theories. These functions are used for the physical purpose of identifying the correlated orbitals in a specific material, and also for the more technical purpose of interfacing DMFT with different kinds of band-structure methods (with three different techniques being used in the present work). We explore and compare two distinct Wannier schemes, namely the maximally-localized-Wannier-function (MLWF) and the $N$-th order muffin-tin-orbital (NMTO) methods. Two correlated materials with different degrees of structural and electronic complexity, SrVO3 and BaVS3, are investigated as case studies. SrVO3 belongs to the canonical class of correlated transition-metal oxides, and is chosen here as a test case in view of its simple structure and physical properties. In contrast, the sulfide BaVS3 is known for its rich and complex physics, associated with strong correlation effects and low-dimensional characteristics. New insights into the physics associated with the metal-insulator transition of this compound are provided, particularly regarding correlation-induced modifications of its Fermi surface. Additionally, the necessary formalism for implementing self-consistency over the electronic charge density in a Wannier basis is discussed.
73 - V.A. Gavrichkov 2005
A novel hybrid scheme is proposed. The {it ab initio} LDA calculation is used to construct the Wannier functions and obtain single electron and Coulomb parameters of the multiband Hubbard-type model. In strong correlation regime the electronic struct ure within multiband Hubbard model is calculated by the Generalized Tight-Binding (GTB) method, that combines the exact diagonalization of the model Hamiltonian for a small cluster (unit cell) with perturbation treatment of the intercluster hopping and interactions. For undoped La$_2$CuO$_4$ and Nd$_2$CuO$_4$ this scheme results in charge transfer insulators with correct values of gaps and dispersions of bands in agreement to the ARPES data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا