ﻻ يوجد ملخص باللغة العربية
The structure of $^{33}$Mg was investigated by means of two knockout reactions, one-neutron removal from $^{34}$Mg and one-proton removal from $^{34}$Al. Using comparative analysis of the population of observed excited states in the residual $^{33}$Mg, the nature of these states can be deciphered. In addition, the long-standing controversy about the parity of the $^{33}$Mg ground state is resolved using momentum distribution analysis, showing a clear signature for negative parity. Partial cross section measurements are compared with the results of eikonal reaction theory combined with large-scale shell model calculations of this complex nucleus located in the island of inversion, where configuration mixing plays a major role.
We report on the first detailed study of the mechanisms involved in knockout reactions, via a coincidence measurement of the residue and fast proton in one-proton knockout reactions, using the S800 spectrograph in combination with the HiRA detector a
We report on the in-beam gamma spectroscopy of $^{102}$Sn and $^{100}$Cd produced via two-neutron removal from carbon and CH$_2$ targets at about 150 MeV/nucleon beam energy. New transitions assigned to the decay of a second 2$^+$ excited state at 24
The two-proton knockout reaction 9Be(26Ne,O2p) was used to explore excited unbound states of 23O and 24O. In 23O a state at an excitation energy of 2.79(13) MeV was observed. There was no conclusive evidence for the population of excited states in 24O.
The structure of $^{35}$P was studied with a one-proton knockout reaction at88~MeV/u from a $^{36}$S projectile beam at NSCL. The $gamma$ rays from thedepopulation of excited states in $^{35}$P were detected with GRETINA, whilethe $^{35}$P nuclei wer
Cross sections for the strongest gamma-ray emission lines produced in alpha-particle reactions with C, Mg, Si, Fe have been measured in the range E_alpha = 50 - 90 MeV at the center for proton therapy at the Helmholtz-Zentrum Berlin. Data for more th