ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectroscopy of nuclei around $^{100}$Sn populated via two-neutron knockout reactions

68   0   0.0 ( 0 )
 نشر من قبل Anna Corsi
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the in-beam gamma spectroscopy of $^{102}$Sn and $^{100}$Cd produced via two-neutron removal from carbon and CH$_2$ targets at about 150 MeV/nucleon beam energy. New transitions assigned to the decay of a second 2$^+$ excited state at 2470(60) keV in $^{102}$Sn were observed. Two-neutron removal cross sections from $^{104}$Sn and $^{102}$Cd have been extracted. The enhanced cross section to the 2$^+_2$ in $^{102}$Sn populated via the $(p,p2n)$ reaction is traced back to an increase of shell-model structure overlaps, consistent with the hypothesis that the proton-induced two-deeply-bound-nucleon removal mechanism is of direct nature.

قيم البحث

اقرأ أيضاً

189 - N. Frank , T. Baumann , D. Bazin 2007
The two-proton knockout reaction 9Be(26Ne,O2p) was used to explore excited unbound states of 23O and 24O. In 23O a state at an excitation energy of 2.79(13) MeV was observed. There was no conclusive evidence for the population of excited states in 24O.
305 - D. Bazin , N. Aoi , H. Baba 2021
The structure of $^{33}$Mg was investigated by means of two knockout reactions, one-neutron removal from $^{34}$Mg and one-proton removal from $^{34}$Al. Using comparative analysis of the population of observed excited states in the residual $^{33}$M g, the nature of these states can be deciphered. In addition, the long-standing controversy about the parity of the $^{33}$Mg ground state is resolved using momentum distribution analysis, showing a clear signature for negative parity. Partial cross section measurements are compared with the results of eikonal reaction theory combined with large-scale shell model calculations of this complex nucleus located in the island of inversion, where configuration mixing plays a major role.
We report on the first detailed study of the mechanisms involved in knockout reactions, via a coincidence measurement of the residue and fast proton in one-proton knockout reactions, using the S800 spectrograph in combination with the HiRA detector a rray at the NSCL. Results on the reactions $^9$Be($^9$C,$^8$B+X)Y and $^9$Be($^8$B,$^7$Be+X)Y are presented. They are compared with theoretical predictions for both the diffraction and stripping reaction mechanisms, as calculated in the eikonal model. The data shows a clear distinction between the two reaction mechanisms, and the observed respective proportions are very well reproduced by the reaction theory. This agreement supports the results of knockout reaction analyses and their applications to the spectroscopy of rare isotopes.
A systematic study of high energy, one-neutron removal reactions on 23 neutron-rich, psd--shell nuclei (Z=5-9, A=12-25) has been carried out. The longitudinal momentum distributions of the core fragments and corresponding single-neutron removal cross sections are reported for reactions on a carbon target. Extended Glauber model calculations, weighted by the spectroscopic factors obtained from shell model calculations, are compared to the experimental results. Conclusions are drawn regarding the use of such reactions as a spectroscopic tool and spin-parity assignments are proposed for 15B, 17C, 19-21N, 21,23O, 23-25F. The nature of the weakly bound systems 14B and 15,17C is discussed.
We study the evolution of the eep cross section on nuclei with increasing asymmetry between the number of neutrons and protons. The calculations are done within the framework of the nonrelativistic and relativistic distorted-wave impulse approximatio n. In the nonrelativistic model phenomenological Woods-Saxon and Hartree-Fock wave functions are used for the proton bound-state wave functions, in the relativistic model the wave functions are solutions of Dirac-Hartree equations. The models are first tested against experimental data on $^{40}$Ca and $^{48}$Ca nuclei, and then they are applied to a set of spherical calcium isotopes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا