ترغب بنشر مسار تعليمي؟ اضغط هنا

Outperforming classical estimation of Post-Newtonian parameters of Earths gravitational field using quantum metrology

129   0   0.0 ( 0 )
 نشر من قبل Marcel Ignacio Y\\'a\\~nez Reyes
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Hong-Ou-Mandel (HOM) effect is analyzed for photons in a modified Mach-Zehnder setup with two particles experiencing different gravitational potentials, which are later recombined using a beam-splitter. It is found that the HOM effect depends directly on the relativistic time dilation between the arms of the setup. This temporal dilation can be used to estimate the $gamma$ and $beta$ parameters of the parameterized post-Newtonian formalism. The uncertainty in the parameters $gamma$ and $beta$ are of the order $ 10^{-8}-10^{-12}$, depending on the quantum state employed.



قيم البحث

اقرأ أيضاً

We use the effective field theory for gravitational bound states, proposed by Goldberger and Rothstein, to compute the interaction Lagrangian of a binary system at the second Post-Newtonian order. Throughout the calculation, we use a metric parametri zation based on a temporal Kaluza-Klein decomposition and test the claim by Kol and Smolkin that this parametrization provides important calculational advantages. We demonstrate how to use the effective field theory method efficiently in precision calculations, and we reproduce known results for the second Post-Newtonian order equations of motion in harmonic gauge in a straightforward manner.
65 - Xing Zhang , Wen Zhao , He Huang 2016
Screened modified gravity (SMG) is a kind of scalar-tensor theories with screening mechanisms, which can generate screening effect to suppress the fifth force in high density environments and pass the solar system tests. Meanwhile, the potential of s calar field in the theories can drive the acceleration of the late universe. In this paper, we calculate the parameterized post-Newtonian (PPN) parameters $gamma$ and $beta$, the effective gravitational constant $G_{rm eff}$ and the effective cosmological constant $Lambda$ for SMG with a general potential $V$ and coupling function $A$. The dependence of these parameters on the model parameters of SMG and/or the physical properties of the source object are clearly presented. As an application of these results, we focus on three specific theories of SMG (chameleon, symmetron and dilaton models). Using the formulae to calculate their PPN parameters and cosmological constant, we derive the constraints on the model parameters by combining the observations on solar system and cosmological scales.
We study parameter estimation of supermassive black hole binary systems in the final stage of inspiral using the full post-Newtonian gravitational waveforms. We restrict our analysis to systems in circular orbit with negligible spins, in the mass ran ge $10^8Ms-10^5Ms$, and compare the results with those arising from the commonly used restricted post-Newtonian approximation. The conclusions of this work are particularly important with regard to the astrophysical reach of future LISA measurements. Our analysis clearly shows that modeling the inspiral with the full post-Newtonian waveform, not only extends the reach to higher mass systems, but also improves in general the parameter estimation. In particular, there are remarkable improvements in angular resolution and distance measurement for systems with a total mass higher than $5times10^6Ms$, as well as a large improvement in the mass determination.
This work relates to the famous experiments, performed in 1975 and 1979 by Werner et al., measuring neutron interference and neutron Sagnac effects in the earths gravitational field. Employing the method of Stodolsky in its weak field approximation, explicit expressions are derived for the two phase shifts, which turn out to be in agreement with the experiments and with the previously obtained expressions derived from semi-classical arguments: these expressions are simply modified by relativistic correction factors.
164 - R. Umstaetter , M. Tinto 2007
We estimate the probability of detecting a gravitational wave signal from coalescing compact binaries in simulated data from a ground-based interferometer detector of gravitational radiation using Bayesian model selection. The simulated waveform of t he chirp signal is assumed to be a spin-less Post-Newtonian (PN) waveform of a given expansion order, while the searching template is assumed to be either of the same Post-Newtonian family as the simulated signal or one level below its Post-Newtonian expansion order. Within the Bayesian framework, and by applying a reversible jump Markov chain Monte Carlo simulation algorithm, we compare PN1.5 vs. PN2.0 and PN3.0 vs. PN3.5 wave forms by deriving the detection probabilities, the statistical uncertainties due to noise as a function of the SNR, and the posterior distributions of the parameters. Our analysis indicates that the detection probabilities are not compromised when simplified models are used for the comparison, while the accuracies in the determination of the parameters characterizing these signals can be significantly worsened, no matter what the considered Post-Newtonian order expansion comparison is.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا