ترغب بنشر مسار تعليمي؟ اضغط هنا

(Stochastic) Model Predictive Control -- a Simulation Example

78   0   0.0 ( 0 )
 نشر من قبل Tim Br\\\"udigam
 تاريخ النشر 2021
والبحث باللغة English
 تأليف Tim Brudigam




اسأل ChatGPT حول البحث

This brief introduction to Model Predictive Control specifically addresses stochastic Model Predictive Control, where probabilistic constraints are considered. A simple linear system subject to uncertainty serves as an example. The Matlab code for this stochastic Model Predictive Control example is available online.

قيم البحث

اقرأ أيضاً

In this paper, we consider a stochastic Model Predictive Control able to account for effects of additive stochastic disturbance with unbounded support, and requiring no restrictive assumption on either independence nor Gaussianity. We revisit the rat her classical approach based on penalty functions, with the aim of designing a control scheme that meets some given probabilistic specifications. The main difference with previous approaches is that we do not recur to the notion of probabilistic recursive feasibility, and hence we do not consider separately the unfeasible case. In particular, two probabilistic design problems are envisioned. The first randomization problem aims to design textit{offline} the constraint set tightening, following an approach inherited from tube-based MPC. For the second probabilistic scheme, a specific probabilistic validation approach is exploited for tuning the penalty parameter, to be selected textit{offline} among a finite-family of possible values. The simple algorithm here proposed allows designing a textit{single} controller, always guaranteeing feasibility of the online optimization problem. The proposed method is shown to be more computationally tractable than previous schemes. This is due to the fact that the sample complexity for both probabilistic design problems depends on the prediction horizon in a logarithmic way, unlike scenario-based approaches which exhibit linear dependence. The efficacy of the proposed approach is demonstrated with a numerical example.
This paper proposes an off-line algorithm, called Recurrent Model Predictive Control (RMPC), to solve general nonlinear finite-horizon optimal control problems. Unlike traditional Model Predictive Control (MPC) algorithms, it can make full use of the current computing resources and adaptively select the longest model prediction horizon. Our algorithm employs a recurrent function to approximate the optimal policy, which maps the system states and reference values directly to the control inputs. The number of prediction steps is equal to the number of recurrent cycles of the learned policy function. With an arbitrary initial policy function, the proposed RMPC algorithm can converge to the optimal policy by directly minimizing the designed loss function. We further prove the convergence and optimality of the RMPC algorithm thorough Bellman optimality principle, and demonstrate its generality and efficiency using two numerical examples.
We propose a learning-based, distributionally robust model predictive control approach towards the design of adaptive cruise control (ACC) systems. We model the preceding vehicle as an autonomous stochastic system, using a hybrid model with continuou s dynamics and discrete, Markovian inputs. We estimate the (unknown) transition probabilities of this model empirically using observed mode transitions and simultaneously determine sets of probability vectors (ambiguity sets) around these estimates, that contain the true transition probabilities with high confidence. We then solve a risk-averse optimal control problem that assumes the worst-case distributions in these sets. We furthermore derive a robust terminal constraint set and use it to establish recursive feasibility of the resulting MPC scheme. We validate the theoretical results and demonstrate desirable properties of the scheme through closed-loop simulations.
In this paper we present a Learning Model Predictive Control (LMPC) strategy for linear and nonlinear time optimal control problems. Our work builds on existing LMPC methodologies and it guarantees finite time convergence properties for the closed-lo op system. We show how to construct a time varying safe set and terminal cost function using closed-loop data. The resulting LMPC policy is time varying and it guarantees recursive constraint satisfaction and non-decreasing performance. Computational efficiency is obtained by convexifing the safe set and terminal cost function. We demonstrate that, for a class of nonlinear system and convex constraints, the convex LMPC formulation guarantees recursive constraint satisfaction and non-decreasing performance. Finally, we illustrate the effectiveness of the proposed strategies on minimum time obstacle avoidance and racing examples.
203 - Ugo Rosolia , Aaron D. Ames 2021
In this paper, we present an iterative Model Predictive Control (MPC) design for piecewise nonlinear systems. We consider finite time control tasks where the goal of the controller is to steer the system from a starting configuration to a goal state while minimizing a cost function. First, we present an algorithm that leverages a feasible trajectory that completes the task to construct a control policy which guarantees that state and input constraints are recursively satisfied and that the closed-loop system reaches the goal state in finite time. Utilizing this construction, we present a policy iteration scheme that iteratively generates safe trajectories which have non-decreasing performance. Finally, we test the proposed strategy on a discretized Spring Loaded Inverted Pendulum (SLIP) model with massless legs. We show that our methodology is robust to changes in initial conditions and disturbances acting on the system. Furthermore, we demonstrate the effectiveness of our policy iteration algorithm in a minimum time control task.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا