ترغب بنشر مسار تعليمي؟ اضغط هنا

Iterative Model Predictive Control for Piecewise Systems

204   0   0.0 ( 0 )
 نشر من قبل Ugo Rosolia
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we present an iterative Model Predictive Control (MPC) design for piecewise nonlinear systems. We consider finite time control tasks where the goal of the controller is to steer the system from a starting configuration to a goal state while minimizing a cost function. First, we present an algorithm that leverages a feasible trajectory that completes the task to construct a control policy which guarantees that state and input constraints are recursively satisfied and that the closed-loop system reaches the goal state in finite time. Utilizing this construction, we present a policy iteration scheme that iteratively generates safe trajectories which have non-decreasing performance. Finally, we test the proposed strategy on a discretized Spring Loaded Inverted Pendulum (SLIP) model with massless legs. We show that our methodology is robust to changes in initial conditions and disturbances acting on the system. Furthermore, we demonstrate the effectiveness of our policy iteration algorithm in a minimum time control task.



قيم البحث

اقرأ أيضاً

428 - Ugo Rosolia , Xiaojing Zhang , 2019
A robust Learning Model Predictive Controller (LMPC) for uncertain systems performing iterative tasks is presented. At each iteration of the control task the closed-loop state, input and cost are stored and used in the controller design. This paper f irst illustrates how to construct robust invariant sets and safe control policies exploiting historical data. Then, we propose an iterative LMPC design procedure, where data generated by a robust controller at iteration $j$ are used to design a robust LMPC at the next $j+1$ iteration. We show that this procedure allows us to iteratively enlarge the domain of the control policy and it guarantees recursive constraints satisfaction, input to state stability and performance bounds for the certainty equivalent closed-loop system. The use of an adaptive prediction horizon is the key element of the proposed design. The effectiveness of the proposed control scheme is illustrated on a linear system subject to bounded additive disturbance.
This paper proposes an off-line algorithm, called Recurrent Model Predictive Control (RMPC), to solve general nonlinear finite-horizon optimal control problems. Unlike traditional Model Predictive Control (MPC) algorithms, it can make full use of the current computing resources and adaptively select the longest model prediction horizon. Our algorithm employs a recurrent function to approximate the optimal policy, which maps the system states and reference values directly to the control inputs. The number of prediction steps is equal to the number of recurrent cycles of the learned policy function. With an arbitrary initial policy function, the proposed RMPC algorithm can converge to the optimal policy by directly minimizing the designed loss function. We further prove the convergence and optimality of the RMPC algorithm thorough Bellman optimality principle, and demonstrate its generality and efficiency using two numerical examples.
Accounting for more than 40% of global energy consumption, residential and commercial buildings will be key players in any future green energy systems. To fully exploit their potential while ensuring occupant comfort, a robust control scheme is requi red to handle various uncertainties, such as external weather and occupant behaviour. However, prominent patterns, especially periodicity, are widely seen in most sources of uncertainty. This paper incorporates this correlated structure into the learning model predictive control framework, in order to learn a global optimal robust control scheme for building operations.
We consider the problem of stabilization of a linear system, under state and control constraints, and subject to bounded disturbances and unknown parameters in the state matrix. First, using a simple least square solution and available noisy measurem ents, the set of admissible values for parameters is evaluated. Second, for the estimated set of parameter values and the corresponding linear interval model of the system, two interval predictors are recalled and an unconstrained stabilizing control is designed that uses the predicted intervals. Third, to guarantee the robust constraint satisfaction, a model predictive control algorithm is developed, which is based on solution of an optimization problem posed for the interval predictor. The conditions for recursive feasibility and asymptotic performance are established. Efficiency of the proposed control framework is illustrated by numeric simulations.
In this paper we present a Learning Model Predictive Control (LMPC) strategy for linear and nonlinear time optimal control problems. Our work builds on existing LMPC methodologies and it guarantees finite time convergence properties for the closed-lo op system. We show how to construct a time varying safe set and terminal cost function using closed-loop data. The resulting LMPC policy is time varying and it guarantees recursive constraint satisfaction and non-decreasing performance. Computational efficiency is obtained by convexifing the safe set and terminal cost function. We demonstrate that, for a class of nonlinear system and convex constraints, the convex LMPC formulation guarantees recursive constraint satisfaction and non-decreasing performance. Finally, we illustrate the effectiveness of the proposed strategies on minimum time obstacle avoidance and racing examples.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا