ترغب بنشر مسار تعليمي؟ اضغط هنا

The DESI Sky Continuum Monitor System

72   0   0.0 ( 0 )
 نشر من قبل Suk Sien Tie
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Dark Energy Spectroscopic Instrument (DESI) is an ongoing spectroscopic survey to measure the dark energy equation of state to unprecedented precision. We describe the DESI Sky Continuum Monitor System, which tracks the night sky brightness as part of a system that dynamically adjusts the spectroscopic exposure time to produce more uniform data quality and to maximize observing efficiency. The DESI dynamic exposure time calculator (ETC) will combine sky brightness measurements from the Sky Monitor with data from the guider system to calculate the exposure time to achieve uniform signal-to-noise ratio (SNR) in the spectra under various observing conditions. The DESI design includes 20 sky fibers, and these are split between two identical Sky Monitor units to provide redundancy. Each Sky Monitor unit uses an SBIG STXL-6303e CCD camera and supports an eight-position filter wheel. Both units have been completed and delivered to the Mayall Telescope at the Kitt Peak National Observatory. Commissioning results show that the Sky Monitor delivers the required performance necessary for the ETC.



قيم البحث

اقرأ أيضاً

629 - L. Amati , J. Braga , F. Frontera 2014
We describe the GRB and All-sky Monitor Experiment (GAME) mission submitted by a large international collaboration (Italy, Germany, Czech Repubblic, Slovenia, Brazil) in response to the 2012 ESA call for a small mission opportunity for a launch in 20 17 and presently under further investigation for subsequent opportunities. The general scientific objective is to perform measurements of key importance for GRB science and to provide the wide astrophysical community of an advanced X-ray all-sky monitoring system. The proposed payload was based on silicon drift detectors (~1-50 keV), CdZnTe (CZT) detectors (~15-200 keV) and crystal scintillators in phoswich (NaI/CsI) configuration (~20 keV-20 MeV), three well established technologies, for a total weight of ~250 kg and a required power of ~240 W. Such instrumentation allows a unique, unprecedented and very powerful combination of large field of view (3-4 sr), a broad energy energy band extending from ~1 keV up to ~20 MeV, an energy resolution as good as ~300 eV in the 1-30 keV energy range, a source location accuracy of ~1 arcmin. The mission profile included a launch (e.g., by Vega) into a low Earth orbit, a baseline sky scanning mode plus pointed observations of regions of particular interest, data transmission to ground via X-band (4.8 Gb/orbit, Alcantara and Malindi ground stations), and prompt transmission of GRB / transient triggers.
The Dark Energy Spectroscopic Instrument (DESI) is a new instrument currently under construction for the Mayall 4-m telescope at Kitt Peak National Observatory. It will consist of a wide-field optical corrector with a 3.2 degree diameter field of vie w, a focal plane with 5,000 robotically controlled fiber positioners and 10 fiber-fed broad-band spectrographs. The DESI Instrument Control System (ICS) coordinates fiber positioner operations, interfaces to the Mayall telescope control system, monitors operating conditions, reads out the 30 spectrograph CCDs and provides observer support and data quality monitoring. In this article, we summarize the ICS design, review the current status of the project and present results from a multi-stage test plan that was developed to ensure the system is fully operational by the time the instrument arrives at the observatory in 2019.
The recently commissioned Dark Energy Spectroscopic Instrument (DESI) will measure the expansion historyof the universe using the Baryon Acoustic Oscillation technique. The spectra of 35 million galaxies and quasarsover 14000 sq deg will be measured during the life of the experiment. A new prime focus corrector for theKPNO Mayall telescope delivers light to 5000 fiber optic positioners. The fibers in turn feed ten broad-bandspectrographs. We describe key aspects and lessons learned from the development, delivery and installation ofthe fiber system at the Mayall telescope.
Fibre-fed spectrographs now have throughputs equivalent to slit spectrographs. However, the sky subtraction accuracy that can be reached has often been pinpointed as one of the major issues associated with the use of fibres. Using technical time obse rvations with FLAMES-GIRAFFE, two observing techniques, namely dual staring and cross beam-switching, were tested and the resulting sky subtraction accuracy reached in both cases was quantified. Results indicate that an accuracy of 0.6% on sky subtraction can be reached, provided that the cross beam-switching mode is used. This is very encouraging with regard to the detection of very faint sources with future fibre-fed spectrographs, such as VLT/MOONS or E-ELT/MOSAIC.
We present the status of the Dark Energy Spectroscopic Instrument (DESI) and its plans and opportunities for the coming decade. DESI construction and its initial five years of operations are an approved experiment of the US Department of Energy and i s summarized here as context for the Astro2020 panel. Beyond 2025, DESI will require new funding to continue operations. We expect that DESI will remain one of the worlds best facilities for wide-field spectroscopy throughout the decade. More about the DESI instrument and survey can be found at https://www.desi.lbl.gov.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا