ﻻ يوجد ملخص باللغة العربية
The recently commissioned Dark Energy Spectroscopic Instrument (DESI) will measure the expansion historyof the universe using the Baryon Acoustic Oscillation technique. The spectra of 35 million galaxies and quasarsover 14000 sq deg will be measured during the life of the experiment. A new prime focus corrector for theKPNO Mayall telescope delivers light to 5000 fiber optic positioners. The fibers in turn feed ten broad-bandspectrographs. We describe key aspects and lessons learned from the development, delivery and installation ofthe fiber system at the Mayall telescope.
The Dark Energy Spectroscopic Instrument (DESI) is under construction to measure the expansion history of the Universe using the Baryon Acoustic Oscillation technique. The spectra of 35 million galaxies and quasars over 14000 sq deg will be measured
We present the status of the Dark Energy Spectroscopic Instrument (DESI) and its plans and opportunities for the coming decade. DESI construction and its initial five years of operations are an approved experiment of the US Department of Energy and i
The Dark Energy Spectroscopic Instrument (DESI) is under construction to measure the expansion history of the Universe using the Baryon Acoustic Oscillation technique. The spectra of 35 million galaxies and quasars over 14000 sq deg will be measured
We describe the design of the Commissioning Instrument for the Dark Energy Spectroscopic Instrument (DESI). DESI will obtain spectra over a 3 degree field of view using the 4-meter Mayall Telescope at Kitt Peak, AZ. In order to achieve the required i
The Dark Energy Spectroscopic Instrument (DESI) is under construction to measure the expansion history of the Universe using the Baryon Acoustic Oscillation technique. The spectra of 35 million galaxies and quasars over 14000 square degrees will be m