ترغب بنشر مسار تعليمي؟ اضغط هنا

Regularity of Intersection Local Times of Fractional Brownian Motions

208   0   0.0 ( 0 )
 نشر من قبل Dongsheng Wu
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English
 تأليف Dongsheng Wu




اسأل ChatGPT حول البحث

Let $B^{alpha_i}$ be an $(N_i,d)$-fractional Brownian motion with Hurst index ${alpha_i}$ ($i=1,2$), and let $B^{alpha_1}$ and $B^{alpha_2}$ be independent. We prove that, if $frac{N_1}{alpha_1}+frac{N_2}{alpha_2}>d$, then the intersection local times of $B^{alpha_1}$ and $B^{alpha_2}$ exist, and have a continuous version. We also establish H{o}lder conditions for the intersection local times and determine the Hausdorff and packing dimensions of the sets of intersection times and intersection points. One of the main motivations of this paper is from the results of Nualart and Ortiz-Latorre ({it J. Theor. Probab.} {bf 20} (2007)), where the existence of the intersection local times of two independent $(1,d)$-fractional Brownian motions with the same Hurst index was studied by using a different method. Our results show that anisotropy brings subtle differences into the analytic properties of the intersection local times as well as rich geometric structures into the sets of intersection times and intersection points.



قيم البحث

اقرأ أيضاً

In this paper we prove exact forms of large deviations for local times and intersection local times of fractional Brownian motions and Riemann-Liouville processes. We also show that a fractional Brownian motion and the related Riemann-Liouville proce ss behave like constant multiples of each other with regard to large deviations for their local and intersection local times. As a consequence of our large deviation estimates, we derive laws of iterated logarithm for the corresponding local times. The key points of our methods: (1) logarithmic superadditivity of a normalized sequence of moments of exponentially randomized local time of a fractional Brownian motion; (2) logarithmic subadditivity of a normalized sequence of moments of exponentially randomized intersection local time of Riemann-Liouville processes; (3) comparison of local and intersection local times based on embedding of a part of a fractional Brownian motion into the reproducing kernel Hilbert space of the Riemann-Liouville process.
We prove the existence of the intersection local time for two independent, d -dimensional fractional Brownian motions with the same Hurst parameter H. Assume d greater or equal to 2, then the intersection local time exists if and only if Hd<2.
The first-passage-time problem for a Brownian motion with alternating infinitesimal moments through a constant boundary is considered under the assumption that the time intervals between consecutive changes of these moments are described by an altern ating renewal process. Bounds to the first-passage-time density and distribution function are obtained, and a simulation procedure to estimate first-passage-time densities is constructed. Examples of applications to problems in environmental sciences and mathematical finance are also provided.
In this note we consider generalized diffusion equations in which the diffusivity coefficient is not necessarily constant in time, but instead it solves a nonlinear fractional differential equation involving fractional Riemann-Liouville time-derivati ve. Our main contribution is to highlight the link between these generalised equations and fractional Brownian motion (fBm). In particular, we investigate the governing equation of fBm and show that its diffusion coefficient must satisfy an additive evolutive fractional equation. We derive in a similar way the governing equation of the iterated fractional Brownian motion.
75 - Donghan Kim 2019
We study a continuous pathwise local time of order p for continuous functions with finite p-th variation along a sequence of time partitions, for even integers p >= 2. With this notion, we establish a Tanaka-type change of variable formula, as well a s Tanaka-Meyer formulae. We also derive some identities involving this high-order pathwise local time, each of which generalizes a corresponding identity from semimartingale theory. We then use collision local times between multiple functions of arbitrary regularity, to study the dynamics of ranked continuous functions of arbitrary regularity. We present also another definition of pathwise local time which is more natural for fractional Brownian Motions, and give a connection with the previous notion of local time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا