ترغب بنشر مسار تعليمي؟ اضغط هنا

Domain alignment within ferroelectric/dielectric PbTiO$_3$/SrTiO$_3$ superlattice nanostructures

160   0   0.0 ( 0 )
 نشر من قبل Paul Evans
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The ferroelectric domain pattern within lithographically defined PbTiO3/SrTiO3 ferroelectric/dielectric heteroepitaxial superlattice nanostructures is strongly influenced by the edges of the structures. Synchrotron x-ray nanobeam diffraction reveals that the spontaneously formed 180{deg} ferroelectric stripe domains exhibited by such superlattices adopt a configuration in rectangular nanostructures in which domain walls are aligned with long patterned edges. The angular distribution of x-ray diffuse scattering intensity from nanodomains indicates that domains are aligned within an angular range of approximately 20{deg} with respect to the edges. Computational studies based on a time-dependent Landau-Ginzburg-Devonshire model show that the preferred direction of the alignment results from lowering of the bulk and electrostrictive contributions to the free energy of the system due to the release of the lateral mechanical constraint. This unexpected alignment appears to be intrinsic and not a result of distortions or defects caused by the patterning process. Our work demonstrates how nanostructuring and patterning of heteroepitaxial superlattices allow for pathways to create and control ferroelectric structures that may appear counterintuitive.



قيم البحث

اقرأ أيضاً

83 - M. S. Prasad , G. Schmidt 2021
A number of recent studies indicate that the charge conduction of the LaAlO$_3$/SrTiO$_3$ interface at low temperature is confined to filaments which are linked to structural domain walls in the SrTiO$_3$ with drastic consequences for example for the temperature dependence of local transport properties. We demonstrate that as a consequences of this current carrying filaments on the nano-scale the magnetotransport properties of the interface are highly anisotropic. Our magnetoresistance measurements reveal that the magnetoresistance in different nanostructures ($<500nm$) is random in magnitude and sign, respectively. Warming up nanostructures above the structural phase transition temperature (105K) results in the significant change in MR. Even a sign change of the magnetoresistance is possible. The results suggest that domain walls that are differently oriented with respect to the surface exhibit different respective magnetoresistance and the total magnetoresistance is a result of a random domain wall pattern formed during the structural phase transition in the SrTiO$_3$ at cool down.
Pristine, undoped graphene has a constant absorption of 2.3 % across the visible to near-infrared (VIS-NIR) region of the electromagnetic spectrum. Under certain conditions, such as nanostructuring and intense gating, graphene can interact more robus tly with VIS-NIR light and exhibit a large nonlinear optical response. Here, we explore the optical properties of graphene/LaAlO$_3$/SrTiO$_3$ nanostructures, where nanojunctions formed at the LaAlO$_3$/SrTiO$_3$ interface enable large (~10$^8$ V/m) electric fields to be applied to graphene over a scale of ~10 nm. Upon illumination with ultrafast VIS-NIR light, graphene/LaAlO$_3$/SrTiO$_3$ nanostructures produce broadband THz emission as well as a sum-frequency generated (SFG) response. Strong spectrally sharp, gate-tunable extinction features (>99.99%) are observed in both the VIS-NIR and SFG regions alongside significant intensification of the nonlinear response. The observed gate-tunable strong graphene-light interaction and nonlinear optical response are of fundamental interest and open the way for future exploitation in graphene-based optical devices.
The spontaneously formed striped polarization nanodomain configuration of a PbTiO${_3}$/SrTiO${_3}$ superlattice transforms to a uniform polarization state under above-bandgap illumination with a time dependence varying with the intensity of optical illumination and a well-defined threshold intensity. Recovery after the end of illumination occurs over a temperature-dependent period of tens of seconds at room temperature and shorter times at elevated temperatures. A model in which the screening of the depolarization field depends on the population of trapped electrons correctly predicts the observed temperature and optical intensity dependence.
We describe the transport properties of mesoscopic devices based on the two dimensional electron gas (2DEG) present at the LaAlO$_3$/SrTiO$_3$ interface. Bridges with lateral dimensions down to 500~nm were realized using electron beam lithography. Th eir detailed characterization shows that processing and confinement do not alter the transport parameters of the 2DEG. The devices exhibit superconducting behavior tunable by electric field effect. In the normal state, we measured universal conductance fluctuations, signature of phase-coherent transport in small structures. The achievement of reliable lateral confinement of the 2DEG opens the way to the realization of quantum electronic devices at the LaAlO$_3$/SrTiO$_3$ interface.
77 - P. X. Zhou , S. Dong , H. M. Liu 2015
Charge dipole moment and spin moment rarely coexist in single-phase bulk materials except in some multiferroics. Despite the progress in the past decade, for most multiferroics their magnetoelectric performance remains poor due to the intrinsic exclu sion between charge dipole and spin moment. As an alternative approach, the oxide heterostructures may evade the intrinsic limits in bulk materials and provide more attractive potential to realize the magnetoelectric functions. Here we perform a first-principles study on LaAlO$_3$/PbTiO$_3$ superlattices. Although neither of the components is magnetic, magnetic moments emerge at the ferroelectric domain walls of PbTiO$_3$ in these superlattices. Such a twist between ferroelectric domain and local magnetic moment, not only manifests an interesting type of multiferroicity, but also is possible useful to pursuit the electrical-control of magnetism in nanoscale heterostructures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا