ﻻ يوجد ملخص باللغة العربية
Brain storm optimization (BSO) is a newly proposed population-based optimization algorithm, which uses a logarithmic sigmoid transfer function to adjust its search range during the convergent process. However, this adjustment only varies with the current iteration number and lacks of flexibility and variety which makes a poor search effciency and robustness of BSO. To alleviate this problem, an adaptive step length structure together with a success memory selection strategy is proposed to be incorporated into BSO. This proposed method, adaptive step length based on memory selection BSO, namely ASBSO, applies multiple step lengths to modify the generation process of new solutions, thus supplying a flexible search according to corresponding problems and convergent periods. The novel memory mechanism, which is capable of evaluating and storing the degree of improvements of solutions, is used to determine the selection possibility of step lengths. A set of 57 benchmark functions are used to test ASBSOs search ability, and four real-world problems are adopted to show its application value. All these test results indicate the remarkable improvement in solution quality, scalability, and robustness of ASBSO.
Population-based methods are often used to solve multimodal optimization problems. By combining niching or clustering strategy, the state-of-the-art approaches generally divide the population into several subpopulations to find multiple solutions for
Swarm intelligence optimization algorithms can be adopted in swarm robotics for target searching tasks in a 2-D or 3-D space by treating the target signal strength as fitness values. Many current works in the literature have achieved good performance
Subset selection is an important component in evolutionary multiobjective optimization (EMO) algorithms. Clustering, as a classic method to group similar data points together, has been used for subset selection in some fields. However, clustering-bas
Coordinated motion control in swarm robotics aims to ensure the coherence of members in space, i.e., the robots in a swarm perform coordinated movements to maintain spatial structures. This problem can be modeled as a tracking control problem, in whi
By producing summaries for long-running events, timeline summarization (TLS) underpins many information retrieval tasks. Successful TLS requires identifying an appropriate set of key dates (the timeline length) to cover. However, doing so is challeng