ﻻ يوجد ملخص باللغة العربية
CO2/CH4 separation using ionic liquids (ILs) encapsulated metal-organic frameworks (MOFs), especially ZIF-8, has shown promise as a new technique for separating CO2 from CH4. However, the mechanisms behind the high CO2/CH4 selectivity of the method remains indistinct. Here we report the progress of understanding the mechanisms from examining the ZIF-8 aperture configuration variation using DFT and MD simulations. The results indicate that the pristine aperture configuration exhibits the best separation performance, and the addition of ILs prevents the apertures from large swing (i.e. configuration variation). Subsequently, the effect of IL viscosity on the layout variation was investigated. MD simulations also show that the pristine aperture configuration is more stabilized by ILs with large viscosity (0-87Cp). Further increase of IL viscosity above 87Cp did not result in noticeable changes in the aperture stability.
The metal-organic framework (MOF) MFU-4l containing Co(II) centers and Cl- ligands has recently shown promising redox activity. Aiming for further improved MOF catalysts for oxidation processes employing molecular oxygen we present a density-function
The conversion of CO2 and CH4 into value-added chemicals is studied in a new geometry of a dielectric barrier discharge (DBD) with multi-electrodes, dedicated to the treatment of high gas flow rates. Gas chromatography is used to define the CO2 and C
Steric hindered frustrated Lewis pairs (FLPs) have been shown to activate hydrogen molecules, and their reactivity is strongly determined by the geometric parameters of the Lewis acid s and bases. A recent experimental study showed that ionic liquids
Hydrogen bonds (HBs) play a crucial role in the physicochemical properties of ionic liquids (ILs). At present, HBs between cations and anions (Ca-An) or between cations (Ca-Ca) in ILs have been reported extensively. Here, we provided DFT evidences fo
The mechanism and products of the structural collapse of the metal-organic frameworks (MOFs) UiO-66, MIL-140B and MIL-140C upon ball-milling are investigated through solid state 13C NMR and pair distribution function (PDF) studies, finding amorphizat