ترغب بنشر مسار تعليمي؟ اضغط هنا

A molecular dynamics simulation study on the frustrated Lewis pairs in ionic liquids

95   0   0.0 ( 0 )
 نشر من قبل Lei Liu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Steric hindered frustrated Lewis pairs (FLPs) have been shown to activate hydrogen molecules, and their reactivity is strongly determined by the geometric parameters of the Lewis acid s and bases. A recent experimental study showed that ionic liquids (ILs) could largely improve the effective configuration of FLPs. However, the detailed mechanistic profile is still unclear. Herein, we performed a molecular dynamics (MD) simulations, aimi ng to reveal the effects of ILs on the structures of FLPs, and to present a rule for selecting more efficient reaction media. For this purpose, mixture systems were adopt consisting of the ILs [Cnmim][NTf2] (n= 6, 10, 14), and the typical FLP (tBu)3P/B(C6F5)3 . Radial distribution function (RDF) results show that toluene competes with (tBu)3P to interact with B(C6F5)3 , resulting in a relatively low effective (tBu)3P/B(C6F5)3 complex. [Cnmim][NTf2] is more intended to form a solvated shell surrounding the (tBu)3P/B(C6F5)3 , which increases the amount of effective FLPs. Spatial distribution function (SDF) results show that toluene formed a continuum solvation shell, which hinders the interactions of (tBu)3P and B(C6F5)3 , while [Cnmim][NTf2] leave a relatively large empty space, which is accessible by (tBu3)P molecules, resulting in a higher probability of Lewis acids and bases interactions. Lastly, we find that the longer alkyl chain length of[Cnmim] cations, the higher probability of effective FLPs.



قيم البحث

اقرأ أيضاً

Nowadays, hydrogen activation by frustrated Lewis pairs (FLPs) and their applications have been demonstrated to be one of emerge research topics in the field of catalysis. Previous studies have shown that the thermodynamics of these reaction is deter mined by electronic structures of FLPs and solvents. Herein, we investigated the systems consisting of typical FLPs and ionic liquids (ILs), which are well known by their large number of types and excellent solvent effects. The density functional theory (DFT) calculations were performed to study the thermodynamics for H2 activation by both inter- and intra-molecular FLPs, as well as the individual components. The results show that the computed overall Gibbs free energies in ILs are more negative than that computed in toluene. Through the thermodynamics partitioning, we find that ILs favor the H-H cleavage elemental step, while disfavored the elemental steps of proton attachment, hydride attachment and zwitterionic stabilization. Moreover, the results show that these effects are strongly dependent on the type of FLPs, where intra-molecular FLPs are more effected compared to the inter-molecular FLPs.
Room Temperature Ionic Liquids (RTILs) have attracted much of the attention of the scientific community in the past decade due the their novel and highly customizable properties. Nonetheless their high viscosities pose serious limitations to the use of RTILs in practical applications. To elucidate some of the physical aspects behind transport properties of RTILs, extensive classical molecular dynamics (MD) calculations are reported. Bulk viscosities and ionic conductivities of butyl-methyl-imidazole based RTILs are presented over a wide range of temperatures. The dependence of the properties of the liquids on simulation parameters, e.g. system size effects and choice of the interaction potential, is analyzed.
182 - Junwu Chen , Kun Dong , Lei Liu 2020
Hydrogen bonds (HBs) play a crucial role in the physicochemical properties of ionic liquids (ILs). At present, HBs between cations and anions (Ca-An) or between cations (Ca-Ca) in ILs have been reported extensively. Here, we provided DFT evidences fo r the exists of HBs between anions (An-An) in the IL 1-(2-hydroxyethyl)-3-methylimidazolium 4-(2-hydroxyethyl)imidazolide [HEMIm][HEIm]. The thermodynamics stabilities of anionic, cationic, and H2O dimers together with ionic pairs were studied by potential energy scans. The results show that the cation-anion pair is the most stable one, while the HB in anionic dimer possesses similar thermodynamics stability to the water dimer. The further geometric, spectral and electronic structure analyses demonstrate that the inter-anionic HB meets the general theoretical criteria of traditional HBs. The strength order of four HBs in complexes is cation-anion pair > H2O dimer = cationic dimer > anionic dimer. The energy decomposition analysis indicates that induction and dispersion interactions are the crucial factors to overcome strong Coulomb repulsions, forming inter-anionic HBs. Lastly, the presence of inter-anionic HBs in ionic cluster has been confirmed by a global minimum search for a system containing two ionic pairs. Even though hydroxyl-functionalized cations are more likely to form HBs with anions, there still have inter-anionic HBs between hydroxyl groups in the low-lying structures. Our studies broaden the understanding of HBs in ionic liquids and support the recently proposed concept of anti-electrostatic HBs.
Room temperature ionic liquids show potential as an alternative to conventional organic membrane solvents mainly due to their properties of low vapor pressure, low volatility and they are often stable. In the present work, the technical feasibilities of room temperature ionic liquids as bulk liquid membranes for phenol removal were investigated experimentally. Three ionic liquids with high hydrophobicity were used and their phenol removal efficiency, membrane stability and membrane loss were studied. Besides that, the effects of several parameters, namely feed phase pH, feed concentration, NaOH concentration and stirring speeds on the performance of best ionic liquid membrane were also evaluated. Lastly, an optimization study on bulk ionic liquid membrane was conducted and the maximum phenol removal efficiency was compared with the organic liquid membranes. The preliminary study shows that high phenol extraction and stripping efficiencies of 96.21% and 98.10%, respectively can be achieved by ionic liquid membrane with a low membrane loss which offers a better choice to organic membrane solvents.
Janus -- or two-sided, asymmetrical -- charged membranes offer promise as ionic current rectifiers. In such systems, pores consisting of two regions of opposite charge can be used to generate a current from a gradient in salinity. The efficiency of J anus pores increases dramatically as their diameter becomes smaller. However, little is known about the underlying transport processes, both for water and ions, in Janus nanopores. In this work, the molecular basis for rectification in Janus nanopores is examined both at rest and in the presence of an applied electric field. By relying on detailed equilibrium and far-from-equilibrium simulations, using explicit models of water and ions, we analyse the structure and dynamics of all molecular species in solution, as well as the overall response of these asymmetric nanopore devices subject to a positive or negative bias, respectively. While there is no precedent for atomistic simulations of a functioning Janus pore, the calculations are able to reproduce key macroscopic experimental observations of asymmetric membranes, serving to establish the validity of the models adopted here. As opposed to the most popularly implemented continuum approaches, here a detailed view is presented of the molecular structures and characteristics that give rise to ionic rectification in such systems, including the local re-orientation of water in the pores and the segregation of ionic species. New insights for the technological development of practical nanofluidic devices are also presented on the basis of these findings.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا