ﻻ يوجد ملخص باللغة العربية
In this paper we consider the steepest descent $L^2$-gradient flow of the entropy functional. The flow expands convex curves, with the radius of an initial circle growing like the square root of time. Our main result is that, for any initial curve (either immersed locally convex of class $C^2$ or embedded of class $W^{2,2}$ bounding a convex domain), the flow converges smoothly to a round expanding multiply-covered circle.
In this paper we use a gradient flow to deform closed planar curves to curves with least variation of geodesic curvature in the $L^2$ sense. Given a smooth initial curve we show that the solution to the flow exists for all time and, provided the leng
In this paper, we consider the $L^2$-gradient flow for the modified $p$-elastic energy defined on planar closed curves. We formulate a notion of weak solution for the flow and prove the existence of global-in-time weak solutions with $p ge 2$ for ini
The concept of natural pseudo-distance has proven to be a powerful tool for measuring the dissimilarity between topological spaces endowed with continuous real-valued functions. Roughly speaking, the natural pseudo-distance is defined as the infimum
In this article we consider the length functional defined on the space of immersed planar curves. The $L^2(ds)$ Riemannian metric gives rise to the curve shortening flow as the gradient flow of the length functional. Motivated by the triviality of th
For large classes of non-convex subsets $Y$ in ${mathbb R}^n$ or in Riemannian manifolds $(M,g)$ or in RCD-spaces $(X,d,m)$ we prove that the gradient flow for the Boltzmann entropy on the restricted metric measure space $(Y,d_Y,m_Y)$ exists - despit