ﻻ يوجد ملخص باللغة العربية
Understanding the critical condition and mechanism of the droplet wetting transition between Cassie-Baxter state and Wenzel state triggered by an external electric field is of considerable importance because of its numerous applications in industry and engineering. However, such a wetting transition on a patterned surface is still not fully understood, e.g., the effects of electro-wetting number, geometry of the patterned surfaces, and droplet volume on the transition have not been systematically investigated. In this paper, we propose a theoretical model for the Cassie-Baxter- Wenzel wetting transition triggered by applying an external voltage on a droplet placed on a mircopillared surface or a porous substrate. It is found that the transition is realized by lowering the energy barrier created by the intermediate composite state considerably, which enables the droplet to cross the energy barrier and complete the transition process. Our calculations also indicate that for fixed droplet volume, the critical electrowetting number (voltage) will increase (decrease) along with the surface roughness for a micro-pillar patterned (porous) surface, and if the surface roughness is fixed, a small droplet tends to ease the critical electrowetting condition for the transition. Besides, three dimensional phase diagrams in terms of electrowetting number, surface roughness, and droplet volume are constructed to illustrate the Cassie-Baxter-Wenzel wetting transition. Our theoretical model can be used to explain the previous experimental results about the Cassie-Baxter-Wenzel wetting transition reported in the literature.
The Cassie-Wenzel transition of a symmetric binary liquid mixture in contact with a nano-corrugated wall is studied. The corrugation consists of a periodic array of nano-pits with square cross sections. The substrate potential is the sum over Lennard
The addition of sweeteners in fizzy beverages not only affects the sugar content but also the bubbles stability. In this article, we propose a model experiment, in which the lifetime of hundreds of single bubbles is measured, to assess the stability
A theory of equilibrium states of electrons above a liquid helium surface in the presence of an external clamping field is built based on the first principles of quantum statistics for the system of many identical Fermi-particles. The approach is bas
We study theoretically the effect of an external field on the nematic-smectic-A (NA) transition close to the tricritical point, where fluctuation effects govern the qualitative behavior of the transition. An external field suppresses nematic director
Dynamic structuring of water is a key player in a large class of processes underlying biochemical and technological developments today, the latter often involving electric fields. However, the anisotropic coupling between the water structure and the