ترغب بنشر مسار تعليمي؟ اضغط هنا

How does the presence of stevia glycosides impact surface bubbles stability?

126   0   0.0 ( 0 )
 نشر من قبل Emmanuelle Rio
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The addition of sweeteners in fizzy beverages not only affects the sugar content but also the bubbles stability. In this article, we propose a model experiment, in which the lifetime of hundreds of single bubbles is measured, to assess the stability of bubbles in solutions containing either sucrose or sweeteners. We show that the bubbles are indeed more stable in presence of sweeteners, which are surface active molecules and adsorb at the interface. Additionally, we test an antifoam at different concentrations and show that our experiment allows to identify the best concentration to reproduce the stability obtained in sucrose when we replace this latter by a sweetener.



قيم البحث

اقرأ أيضاً

Surface bubbles have attracted much interest in the past decades. In this article, we propose to explore the lifetime and thinning dynamics of centimetric surface bubbles. We study the impact of the bubbles size as well as that of the atmospheric hum idity through a careful control and systematic variation of the relative humidity in the measuring chamber. We first adress the question of the drainage under saturated water vapor conditions and show that a model including both capillary and gravity driven drainage provides the best prediction for this process. Additionally, unprecedented statistics on the bubbles lifetimes confirm experimentally that this parameter is set by evaporation to leading order. We make use of a model based on the overall thinning dynamics of the thin film and assume a rupture thickness of the order 10-100 nm to obtain a good representation of these data. For experiments conducted far from saturation, the convective evaporation of the bath is shown to dominate the overall mass loss in the cap film due to evaporation.
108 - M. Musso , C. Cadiou , C. Pichon 2017
The mass, accretion rate and formation time of dark matter haloes near proto-filaments (identified as saddle points of the potential) are analytically predicted using a conditional version of the excursion set approach in its so-called upcrossing app roximation. The model predicts that at fixed mass, mass accretion rate and formation time vary with orientation and distance from the saddle, demonstrating that assembly bias is indeed influenced by the tides imposed by the cosmic web. Starved, early forming haloes of smaller mass lie preferentially along the main axis of filaments, while more massive and younger haloes are found closer to the nodes. Distinct gradients for distinct tracers such as typical mass and accretion rate occur because the saddle condition is anisotropic, and because the statistics of these observables depend on both the conditional means and their covariances. The theory is extended to other critical points of the potential field. The response of the mass function to variations of the matter density field (the so-called large scale bias) is computed, and its trend with accretion rate is shown to invert along the filament. The signature of this model should correspond at low redshift to an excess of reddened galactic hosts at fixed mass along preferred directions, as recently reported in spectroscopic and photometric surveys and in hydrodynamical simulations. The anisotropy of the cosmic web emerges therefore as a significant ingredient to describe jointly the dynamics and physics of galaxies, e.g. in the context of intrinsic alignments or morphological diversity.
60 - Ke Xiao , Xi Chen , 2021
Understanding the critical condition and mechanism of the droplet wetting transition between Cassie-Baxter state and Wenzel state triggered by an external electric field is of considerable importance because of its numerous applications in industry a nd engineering. However, such a wetting transition on a patterned surface is still not fully understood, e.g., the effects of electro-wetting number, geometry of the patterned surfaces, and droplet volume on the transition have not been systematically investigated. In this paper, we propose a theoretical model for the Cassie-Baxter- Wenzel wetting transition triggered by applying an external voltage on a droplet placed on a mircopillared surface or a porous substrate. It is found that the transition is realized by lowering the energy barrier created by the intermediate composite state considerably, which enables the droplet to cross the energy barrier and complete the transition process. Our calculations also indicate that for fixed droplet volume, the critical electrowetting number (voltage) will increase (decrease) along with the surface roughness for a micro-pillar patterned (porous) surface, and if the surface roughness is fixed, a small droplet tends to ease the critical electrowetting condition for the transition. Besides, three dimensional phase diagrams in terms of electrowetting number, surface roughness, and droplet volume are constructed to illustrate the Cassie-Baxter-Wenzel wetting transition. Our theoretical model can be used to explain the previous experimental results about the Cassie-Baxter-Wenzel wetting transition reported in the literature.
The impact of COVID-19 on students has been enormous, with an increase in worries about fiscal and physical health, a rapid shift to online learning, and increased isolation. In addition to these changes, students with disabilities/health concerns ma y face accessibility problems with online learning or communication tools, and their stress may be compounded by additional risks such as financial stress or pre-existing conditions. To our knowledge, no one has looked specifically at the impact of COVID-19 on students with disabilities/health concerns. In this paper, we present data from a survey of 147 students with and without disabilities collected in late March to early April of 2020 to assess the impact of COVID-19 on these students education and mental health. Our findings show that students with disabilities/health concerns were more concerned about classes going online than their peers without disabilities. In addition, students with disabilities/health concerns also reported that they have experienced more COVID-19 related adversities compared to their peers without disabilities/health concerns. We argue that students with disabilities/health concerns in higher education need confidence in the accessibility of the online learning tools that are becoming increasingly prevalent in higher education not only because of COVID-19 but also more generally. In addition, educational technologies will be more accessible if they consider the learning context, and are designed to provide a supportive, calm, and connecting learning environment.
This work discusses the sedimentation stability and aging of aqueous suspension of Laponite in the presence of cetyltrimethylammonium bromide (CTAB). The concentration of Laponite was fixed at the constant level $C_l=2$ %wt, which corresponds to the threshold between equilibrium gel IG$_1$ and repulsive gel IG$_2$ phases. The concentration of CTAB $C_s$ was within 0-0.3 %wt. In the presence of CTAB the Laponite aqueous suspensions were unstable against sedimentation and they separated out into upper and bottom layers (U- and B-layers, respectively). The dynamic light scattering technique revealed that the addition of CTAB even at rather small concentration, $C_s=0.0164$ %wt ($0.03 CEC$), induced noticeable changes in the aging dynamics of U-layer, and it was explained by equilibration of CTAB molecules that were initially non-uniformly distributed between different Laponite particles. Accelerated stability analysis by means of analytical centrifugation with rotor speed ${omega}=500-4000$ rpm revealed three sedimentation regimes: continuous (I, $C_s<0.14$ %wt), zone-like (II, $0.14<C_s<0.2$ %wt) and gel-like (III, $C_s >0.2$ %wt). It was demonstrated that B-layer was soft in the zone-like regime. The increase of ${omega}$ resulted in its supplementary compressing and the collapse of soft sediment above certain critical centrifugal acceleration.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا